Effect of Dopants on the Microwave Magnetic Characteristics of FeCoBM-Al2O3 Soft Magnetic Thin Films

Article Preview

Abstract:

A series of FeCoBM (M=Nb, Zr, Hf, Mo ,Ta, Ti)–Al2O3 films were prepared on glass and polymer substrates by means of RF magnetron co-sputtering. Effect of dopants on the soft magnetic properties and microwave magnetic characteristics of FeCoBM-Al2O3 Thin Films were studied. To further tailor the magnetic characteristics of the films, the (Fe40Co40B20)94.5Hf2.5–(Al2O3)3 film was annealed at 200 to 400°C for 60 min. As a consequence, the (Fe40Co40B20)94.5Hf2.5–(Al2O3)3 film annealed at 350°C exhibit excellent properties with high saturation magnetization of 1197 kA/m, high resonant frequency of 1.76 GHz, and the real part of permeability is about 600, which is maintained up to 1.5GHz. These results show that the presented films possesses potential in designing micro-magnetic devices for Monolithic Microwave Integrated Circuit (MMIC) and surface mount technology (SMT)industry.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 560-561)

Pages:

797-802

Citation:

Online since:

August 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S. Ohnuma, N. Kobayashi, T. Masumoto, S. Mitani and H. Fujimori. Magnetostriction and soft magnetic properties of (CoFe)–Al–O granular films with high electrical resistivity. Journal of applied physics, (1999), 85: 4574.

DOI: 10.1063/1.370412

Google Scholar

[2] M. Yamaguchi, K. Hyeon Kim, S. Ikedaa. Soft magnetic materials application in the RF range. Journal of magnetism and magnetic materials, (2006), 304(2): 208-213.

DOI: 10.1016/j.jmmm.2006.02.143

Google Scholar

[3] V. Bekker, K.Seemann, H. Leiste, C. Ziebert. New CMOS compatible soft ferromagnetic materials with in-plane uniaxial anisotropy for hf micro-inductor applications. Journal of magnetism and magnetic materials, (2005), 290: 1434-1437.

DOI: 10.1016/j.jmmm.2004.11.541

Google Scholar

[4] V. Korenivski. GHz magnetic film inductors. Journal of magnetism and magnetic materials, (2000), 215: 800-806.

DOI: 10.1016/s0304-8853(00)00292-4

Google Scholar

[5] M. Xu, T. M. Liakopoulos, C. H. Ahn. A microfabricated transformer for high-frequency power or signal conversion. IEEE Transactions on Magnetics, (1998), 34(4): 1369-1371.

DOI: 10.1109/20.706551

Google Scholar

[6] J. S. Liao, Z. K. Feng, J. Qiu, Y.Q. Tong. High‐frequency permeability of sputtered Fe–Co–B‐based soft magnetic thin films. physica status solidi (a), (2008), 205(12): 2943-2947.

DOI: 10.1002/pssa.200824316

Google Scholar

[7] S. X. Wang, N. X. Sun, M. Yamaguchi, S. Yabukami. Sandwich films: Properties of a new soft magnetic material. Nature, (2000), 407(6801): 150-151.

DOI: 10.1038/35025142

Google Scholar

[8] M. Munakata, M.Yagi, M.Motoyama, Y.Shimada, M.Baba, M.Yamaguchi, K.I. Arai. Thickness effect on 1 GHz permeability of (CoFeB)-(SiO2) films with high electrical resistivity. IEEE Transactions on Magnetics, (2001), 37(4): 2258-2260.

DOI: 10.1109/20.951141

Google Scholar

[9] J. Qiu, R. Z. Gong, Z. K. Feng, J.S. Liao. High frequency microwave characteristics of amorphous FeCoNiB-SiO2 thin films. Journal of Alloys and Compounds, (2010), 496(1-2): 467-471.

DOI: 10.1016/j.jallcom.2010.02.081

Google Scholar

[10] S. Wang, X. D. Zhang, J. G. Li, Q. Tian, X.L. Kou. Effect of B content on structure and magnetic properties of FeCoB-Al2O3 nanogranular films. Applied Physics A: Materials Science & Processing, (2011), 104(1):1-9.

DOI: 10.1007/s00339-010-6178-y

Google Scholar

[11] S. Wang, X. D. Zhang, J. G. Li, J.Ma, J.J. Huang. Enhanced magnetic softness and high-frequency characteristics of Fe51.1Co48.9B-Al2O3 nanogranular films. Scripta Materialia, (2011), 65(1):45–48

DOI: 10.1016/j.scriptamat.2011.03.010

Google Scholar

[12] B. M. Zhang , G. W. Wang , F. Zhang , Y.H. Xiao, S.H.Ge. High-frequency FeCoNiNbB–SiO2 nano-granular films with high resistivity and adjustable resonance frequency from 1.3 to 7.8 GHz. Applied Physics A: Materials Science & Processing, (2009) 97: 657–661.

DOI: 10.1007/s00339-009-5278-z

Google Scholar

[13] X. L. Fan, D. S. Xue, M. Lin, Z.M. Zhang, D.W. Guo, C.J. Jiang, J.Q Wei. In situ fabrication of Co90Nb10 soft magnetic thin films with adjustable resonance frequency from 1.3 to 4.9 GHz. Journal of applied physics, (2008), 92: 222505.

DOI: 10.1063/1.2939439

Google Scholar

[14] S. D. Li, Z. R. Yuan, J.G. Duh. High-frequency ferromagnetic properties of as-deposited FeCoZr films with uniaxial magnetic anisotropy. Journal of physics D: applied physics, (2008), 41:055004.

DOI: 10.1088/0022-3727/41/5/055004

Google Scholar

[15] C.J. Jiang , D.S. Xue , D. W. Guo, X.L. Fan. Adjustable resonance frequency and linewidth by Zr doping in Co thin films. Journal of applied physics, (2009), 106:103910.

DOI: 10.1063/1.3260238

Google Scholar

[16] X. F. Bi, J. P. Cui. Temperature dependence of structural and transport propertyof Cu-free FeCoZrB magnetic films. Thin Solid Films, (2008), 516:2321– 2324.

DOI: 10.1016/j.tsf.2007.08.126

Google Scholar

[17] S. D. Li, M. Liu, F. Xu, J. Lou, Z.J. Tian, J.P. Wu, Y.Hu, X.L. Cai, J.G. Duh, N. X. Sun. Soft magnetism and microwave magnetic properties of Fe-Co-Hf films deposited by composition gradient sputtering. Journal of applied physics, (2011), 109:07A315.

DOI: 10.1063/1.3549584

Google Scholar

[18] S. W. Huang, Y. T. Lai, J.G. Duh. Effects of the Hf content on the microstructure and magnetic properties of Co–Hf–Ta thin films. Applied Surface Science, (2011), 257:2042-2045.

DOI: 10.1016/j.apsusc.2010.09.049

Google Scholar

[19] C. C. Hsieh, T. H. Lin1, H. W. Chang, C. W. Chang, W. C. Chang, and C. C. Yang. Effect of Dopants on the Soft Magnetic Properties and High Frequency Characteristics of FeCoBM (M = Ti, Nb, Hf, and Ta) Thin Films. Journal of Nanoscience and Nanotechnology, (2011),11: 2752–2755.

DOI: 10.1166/jnn.2011.2726

Google Scholar

[20] P. K. Amiri, B. Rejaei, Y. Zhuang, M.Vroubel, D.W. Lee, S.X. Wang, and J. N. Burghartz. Integrated Microstrip Lines With Co–Ta–Zr Magnetic Films. IEEE Transactions on Magnetics, (2008), 40(11): 3103-3106.

DOI: 10.1109/tmag.2008.2002432

Google Scholar

[21] X. D. Zhang, S. Wang, J. Zhou, J.G. Li, D.M. Jiao, X.L. Kou. Soft magnetic properties, high frequency characteristics, and thermal stability of co-sputtered FeCoTiN films. Journal of Alloys and Compounds, (2009), 474: 273-278.

DOI: 10.1016/j.jallcom.2008.06.080

Google Scholar

[22] S. I. Tanasea, D. P. Tanasea, M. Dobromira, V.Georgescu. Morphology, magnetic, magnetoresistance and optical properties of Co–Ni–Mo alloys thin films. Applied Surface Science, (2011), 257: 10903-10909.

DOI: 10.1016/j.apsusc.2011.07.139

Google Scholar

[23] G. W. Qin, B. Yang, N. Xiao, Y.P. Ren, M. Jiang, X. Zhao, K. Oikawa. Origin on amorphization of Co–Mo magnetic thin films: Experiments and thermodynamic calculation. Thin Solid Films, (2009), 517: 2984-2987.

DOI: 10.1016/j.tsf.2009.01.003

Google Scholar