[1]
M.E. Davis, S.I. Zones, in: M.L. Occelli, H. Kesseler (Eds.), Synthesis of Porous Materials: Zeolites, Clays and Nanostructures, Marcel Dekker, New York, 1996.
Google Scholar
[2]
R.F. Lobo, S.I. Zones, M.E. Davis, Structure-direction in zeolite synthesis, J. Inclusion Phenom. Mol. Recognition. Chem. 1995; 21: 47–78.
Google Scholar
[3]
M.A. Camblor, L.A. Villaescusa, M.J. Diaz-Cabanas, Synthesis of all-silica and high-silica molecular sieves in fluoride media, Topics Catal. 9 (1999) 59–76.
DOI: 10.1002/chin.200014229
Google Scholar
[4]
M. Matsukata, M. Ogura, T. Osaki, P.R.H.P. Rao, M. Nomura, E. Kikuchi, Conversion of dry gel to microporous crystals in gas phase, Topics Catal. 9 (1999) 77–92.
DOI: 10.1023/a:1019106421183
Google Scholar
[5]
R.M. Barrer, J.W. Baynham, F.W. Bultitude, W.M. Meier, Hydrothermal chemistry of the silicates. Part VIII. Low-temperature crystal growth of aluminosilicates, and of some gallium and germanium analogues, J. Chem. Soc. (1959) 195–206.
DOI: 10.1039/jr9590000195
Google Scholar
[6]
D.W. Breck, Zeolite Molecular Sieve, Wiley, New York, 1974.
Google Scholar
[7]
G. Perego, R. Millini, G. Bellussi, in: H.G. Karge, J. Weitkamp (Eds.), Molecular Sieves, Vol. 1, Springer, Berlin, 1998.
Google Scholar
[8]
M. Uguina, D. Serrano, G. Ovejero, R. Van Grieken, M. Camacho, Preparation of TS-1 by wetness impregnation of amorphous SiO2—TiO2 solids: influence of the synthesis variables, Appl. Catal. A 124 (1995) 391–408.
DOI: 10.1016/0926-860x(95)00007-0
Google Scholar
[9]
B. Notari, Microporous crystalline titanium silicates, Catal. Today 18 (1993) 163–172.
Google Scholar
[10]
D. Barthomeuf, Topology and maximum content of isolated species (Al, Ga, Fe, B, Si, ...) in a zeolitic framework. An approach to acid catalysis, J. Phys. Chem. 97 (1993) 10092–10096.
DOI: 10.1021/j100141a032
Google Scholar
[11]
F.R. Ribeiro, F. Alvarez, C. Henriques, F. Lemos, J.M. Lopes, M.F. Ribeiro, Structure-activity relationship in zeolites, J. Mol. Catal. A 96 (1995) 245–270.
DOI: 10.1016/1381-1169(94)00058-1
Google Scholar
[12]
J.M. Maselli, A.W. Peters, Preparation and Properties of Fluid Cracking Catalysts for Residual Oil Conversion, Catal. Rev. Sci. Eng. 26 (1984) 525–554.
DOI: 10.1080/01614948408064725
Google Scholar
[13]
B.C. Gates, Catalytic Chemistry, Wiley, New York, 1992.
Google Scholar
[14]
C.V. McDaniel, P.K. Maher, Molecular Sieves, Society of Chemical Industry, London, 1968.
Google Scholar
[15]
B.A. Williams, S.M. Babitz, J.T. Miller, R.Q. Snurr, H.H. Kung, The roles of acid strength and pore diffusion in the enhanced cracking activity of steamed Y zeolites, Appl. Chem. A 177 (1999) 161–175.
DOI: 10.1016/s0926-860x(98)00264-6
Google Scholar
[16]
A. Taguchi, F. Schüth, Ordered mesoporous materials in catalysis, Microporous Mesoporous Mater. 77 (2005) 1–45
DOI: 10.1016/j.micromeso.2004.06.030
Google Scholar
[17]
J.H. Lunsford, in: M.L. Occelli (Ed.), Fluid Catalytic Cracking II, Vol. 452, Washington, DC, 1991.
Google Scholar
[18]
H. P. Raja, R. Poladi, C. L. Christopher. Synthesis, Characterization, and Catalytic Properties of MMM-1, Microporous/Mesoporous Material, J. Solid State Chem. 167 (2002) 363–369.
DOI: 10.1006/jssc.2002.9546
Google Scholar
[19]
M. Taramasso, G. perego, B. Notari, Preparation of porous crystalline synthetic material comprised of silicon, US Patent 4,410,501. (1983).
Google Scholar
[20]
H. Liu, G. Lu, Y. Guo, Effect of pretreatment on properties of TS-1/diatomite catalyst for hydroxylation of phenol by H2O2 in fixed-bed reactor, Catal. Today 93–95 (2004) 353–357.
DOI: 10.1016/j.cattod.2004.06.083
Google Scholar