Enhanced Magnetic Properties and Spin-Phonon Coupling of Single-Crystalline BiFeO3 Nanorods Prepared by Hydrothermal Technique

Article Preview

Abstract:

By hydrothermal methods single-crystalline BiFeO3 (BFO) nanorods with diameters of 15-40nm and lengths of 100-400nm were synthesized. The rhombohedra phased nanorods grow along the [110] direction. The nanorods show weak ferromagnetism at room temperature and enhanced spin-glass type magnetism at low temperature. Around 100K, a strong spin-two-phonon coupling has been detected, confirming the spin-glass freezing behaviors. With emphasis on the size and morphology, the enhanced magnetism and the spin-glass freezing of the BFO nanorods have been discussed.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 560-561)

Pages:

766-770

Citation:

Online since:

August 2012

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J. Wang, J. Neaton, H. Zheng and R. Ramesh, Epitaxial BiFeO3 Multiferroic Thin Film Heterostructures, Science, 299 (2003) 1719-1721.

Google Scholar

[2] F. Gao, X. Chen, K. Yin, S. Dong and J. M. Liu, Visible-Light Photocatalytic Properties of Weak Magnetic BiFeO3. Adv. Mater. 19 (2007) 2889-2892.

DOI: 10.1002/adma.200602377

Google Scholar

[3] B. Liu, B. Hu and Z. Du, Hydrothermal synthesis and magnetic properties of single-crystalline BiFeO3 nanowiresw, Chem. Comm., 47 (2011) 8166-8188.

DOI: 10.1039/c1cc11896j

Google Scholar

[4] F. Gao, Y. Yuan, K. F. Wang and J. M. Liu, Preparation and photoabsorption characterization of BiFeO3 nanowires, Appl. Phys. Lett., 89 (2006) 102506.

DOI: 10.1063/1.2345825

Google Scholar

[5] T. J. Park, Y. Mao and S. S. Wong, Synthesis and characterization of multiferroic BiFeO3 nanotubes, Chem. Comm., 23(2004) 2708-2711.

DOI: 10.1039/b409988e

Google Scholar

[6] T. Park, G. Papaefthymiou and A. Viescas, Size-Dependent Properties of Multiferroic BiFeO3 Nanoparticles, Nano Lett., 7 (2007) 766-768.

DOI: 10.1021/nl063039w

Google Scholar

[7] M. Ramirez, M. Krishnamurthi and S. Denev, Two-phonon coupling to the antiferromagnetic phase transition in multiferroic BiFeO3, Appl. Phys. Lett. vol 92(2007) 022511.

DOI: 10.1063/1.2829681

Google Scholar

[8] W. Eerenstein, F. Morrison, J. Dho, M. Blamire, J. F. Scott, N. D. Mathur, Comment on "Epitaxial BiFeO3 Multiferroic Thin Film, Science 307 (2005) 1203a.

DOI: 10.1126/science.1105422

Google Scholar

[9] S. T. Zhang, M. H. Lu, D. Wu, Y. F. Chen and N. B. Ming, Larger polarization and weak ferromagnetism in quenched BiFeO3. Appl. Phys. Lett., 87 (2005) 262907.

DOI: 10.1063/1.2147719

Google Scholar

[10] C. Ederer, N. A. Spaldin, Influence of strain and oxygen vacancies on the magnetoelectric BiFeO3, Phys. Rev. B, 71, 224103, June (2005).

Google Scholar

[11] A. V. Zalesskii, A. K. Zvezdin, A. A. Frolov, and A. A. Bush, Flexomagnetoelectric interaction in multiferroics, JETP Lett. 71 (2000) 465.

Google Scholar

[12] L. Neel, Geophys. 5 (1949) 99-136.

Google Scholar

[13] H. Mamiya, I. Nakatani, T. Furubayashi, Blocking and Freezing of Magnetic Moments for Iron Nitride Fine Particle Systems, Phys. Rev. Lett. 80 (1998) 177-179.

DOI: 10.1103/physrevlett.80.177

Google Scholar

[14] G. L. Yuan, S. W. Or, and H. L. Wa Chan, Raman scattering spectra and ferroelectric properties of Bi1aFeO3, J. Appl. Phys. 101(2007) 064101.

Google Scholar

[15] M. K. Singh, H. M. Jang, S. Ryu, and M. Jo, Polarized Raman scattering of multiferroic BiFeO3 epitaxial films, Appl. Phys. Lett. 88 (2006) 042907.

DOI: 10.1063/1.2168038

Google Scholar

[16] M. K. Singh, S. Ryu, and H. M. Jang, Polarized Raman scattering of multiferroic BiFeO3 thin films, Phys. Rev. B 72 (2005) 132101.

Google Scholar

[17] P. Hermet, M. Goffinet, J. Kreisel, and Ph. Ghosez, Raman and infrared spectra of multiferroic bismuth ferrite from first principles, Phys. Rev. B 75 (2007) 220102.

DOI: 10.1103/physrevb.75.220102

Google Scholar

[18] H. Fukumura, H. Harima and K. Kisoda, Dielectric Spectra of Bi0. 98Nd0. 02FeO3 Multiferroic Thin Films. J. Magn. Magn. Mater. 310 (2007) e367.

Google Scholar

[19] S. Kamba, D. Nuzhnyy and M. Savinov, Infrared and terahertz studies of polar phonons and magnetodielectric effect in multiferroic BiFeO3 ceramics , Phys. Rev. B 75 (2007) 024403.

DOI: 10.1103/physrevb.75.024403

Google Scholar

[20] K. F. McCarty, Inelastic light scattering in α-Fe2O3: Phonon vs magnon scattering. Solid State Comm. 68 (1988) 799-802.

DOI: 10.1016/0038-1098(88)90067-1

Google Scholar

[21] T. P. Martin, R. Merlin, D. R. Huffman, and M. Cardona, Raman scattering from phonons and magnons in antiferromagnetic. Solid State Comm. 22 (1977) 565-569.

DOI: 10.1016/0038-1098(77)90137-5

Google Scholar

[22] M. J. Massey, U. Baier, R. Merlin, and W. H. Weber, Effects of pressure and isotopic substitution on the Raman spectrum of α-Fe2O3, Phys. Rev. B 41 (1990) 7822.

Google Scholar

[23] A. Kumar, R. C. Rai and N. J. Podraza, Magnon sidebands and spin-charge coupling in bismuth ferrite. Appl. Phys. Lett. 92 (2008) 1915-(1917).

Google Scholar

[24] V. Palkar, J. John and R. Pinto, Microstructure and Electrical Properties of Cosubstituted BiFeO3. Appl. Phys. Lett. 80 (2002) 16281631.

Google Scholar

[25] R. Haumont, J. Kreisel, P. Bouvier, and F. Hippert, Phonon anomalies and the ferroelectric phase transition in BFeO3. Phys. Rev. B 73 (2006) 132101.

DOI: 10.1103/physrevb.73.132101

Google Scholar

[26] R. Haumont, J. Kreisel, and P. Bouvier, High-pressure phase transitions in BiFeO3: hydrostatic versus, Phase Transitions 79(2006) 1043-1049.

DOI: 10.1080/01411594.2011.552014

Google Scholar