[1]
Z.W. Pan, Z.R. Dai, Z.L. Wang, Nanobelts of semiconducting oxides, Science, 291 (2001) 1947-(1949).
Google Scholar
[2]
M.H. Huang, S. Mao, H. Feick, et al., Room-temperature Ultraviolet nanowire nanolasers, Science, 292 (2001) 1897-1899.
DOI: 10.1126/science.1060367
Google Scholar
[3]
J. Wang, M.S. Gudiksen, X. Duan, Y. Cui, C.M. Lieber, Highly polarized photoluminescence and photodetection from single indium phosphide nanowires, Science, 293 (2001) 1455-1457.
DOI: 10.1126/science.1062340
Google Scholar
[4]
H.W. Suh, G.Y. Kim, Y.S. Jung, W.K. Choi, D. Byun, Growth and properties of ZnO nanoblade and nanoflower prepared by ultrasonic pyrolysis, J. Appl. Phys. 97 (2005) 044305.
DOI: 10.1063/1.1849825
Google Scholar
[5]
X.H. Sun, S. Lam, T.K. Sham, et al., Synthesis and synchrotron light-induced luminescence of ZnO nanostructures: Nanowires, Nanoneedles, nanoflowers, and tubular whiskers, J. Phys. Chem. B 109 (2005) 3120-3125.
DOI: 10.1021/jp044926v
Google Scholar
[6]
Y. Fang, X. Wen, S. Yang, et al., Hydrothermal synthesis and optical properties of ZnO nanostructured films directly growth from/on Zinc substrates, J. Sol–Gel Sci. Technol. 36 (2005) 227-234.
DOI: 10.1007/s10971-005-3563-7
Google Scholar
[7]
A. Narayanaswamy, H. Xu, N. Pradhan, et al., Formation of nearly monodisperse In2O3 nanodots and oriented-attached nanoflowers: hydrolysis and alcoholysis vs pyrolysis, J. Am. Chem. Soc. 128 (2006) 10310-10319.
DOI: 10.1021/ja0627601
Google Scholar
[8]
F. Xu, K. Yu, G. Li, et al., Synthesis and field emission of four kinds of ZnO nanostructures: nanosleeve-fishes, radial nanowire arrays, nanocombs and nanoflowers, Nanotechnology 17 (2006) 28552859.
DOI: 10.1088/0957-4484/17/12/005
Google Scholar
[9]
W.T. Yao, S.H. Yu, S.J. Liu, et al., Architectural control syntheses of CdS and CdSe nanoflowers, branched nanowires, and nanotrees via a solvothermal approach in a mixed solution and their photocatalytic property, J. Phys. Chem. B 110 (2006).
DOI: 10.1021/jp060164n.s001
Google Scholar
[10]
A.L. Yarin, A.G. Yazicioglu, C.M. Megaridis, Thernal stimulation of aqueous volumes contained in carbon nanotubes: experiment and modeling, Appl. Phys. Lett. 86 (2005) 013109.
DOI: 10.1063/1.1844602
Google Scholar
[11]
R. Ma, Y. Bando, In-Ni microballs catalyzed growth of dense and highly aligned silica nanowires, Chem. Phys. Lett. 377 (2003) 177-183.
DOI: 10.1016/s0009-2614(03)01156-4
Google Scholar
[12]
Y.Q. Zhu, W. K. Hsu, M. Terrones, et al., Microscopy study of the growth process and structural features of Silicon Oxide nanoflowers, Chem. Mater. 11 (1999) 2709-2715.
DOI: 10.1021/cm9910052
Google Scholar
[13]
M.T. Hsiao, S.F. Chen, D.B. Shieh, et al., One-pot synthesis of hollow Au3Cu1 spherical-like and biomineral botallackite Cu2(OH)3Cl flowerlike architectures exhibiting antimicrobial activity, J. Phys. Chem. B 110 (2006) 205-210.
DOI: 10.1021/jp054827x.s001
Google Scholar
[14]
L. Qian, X. Yang, Polyamidoamine dendrimers-assisted electrodeposition of gold-platinum bimetallic nanoflowers, J. Phys. Chem. B 110 (2006) 16672-16678.
DOI: 10.1021/jp063302h
Google Scholar
[15]
T. Wang, X. Hu, S. Dong, Surfactantless synthesis of multiple shapes of gold nanostructures and their shape-dependent SERS spectroscopy, J. Phys. Chem. B 110 (2006) 16930-16936.
DOI: 10.1021/jp062486x
Google Scholar
[16]
X. Ma, B. Yuan, Fabrication of carbon nanoflowers by plasma-enhanced chemical vapor deposition, Appl. Surf. Sci. 255 (2009) 7846-7850.
DOI: 10.1016/j.apsusc.2009.03.061
Google Scholar
[17]
J. Ahn, M. A. Mastro, J. Hite, et al., Elctroluminescence from ZnO nanoflowers/GaN thin film p-n heterojunction, App. Phys. Lett. 97(2010) 082111.
DOI: 10.1063/1.3481415
Google Scholar
[18]
X. Qing, S. Liu, K. Huang, et al., Facile synthesis of Co3O4 nanoflowers grown on Ni foam with superior electrochemical perfornance, Electrochimica Acta, 56 (2011) 4985-4991.
DOI: 10.1016/j.electacta.2011.03.118
Google Scholar
[19]
H. Nagai, Y. Noguchi, Crack formation InP-GaxIn1-xAs-InP double –heterostructure fabrication, Appl. Phys. Lett. 29 (1976) 740-741.
DOI: 10.1063/1.88923
Google Scholar
[20]
S. Bandy, C. Nishimoto, S. Hyder, C. Hooper, Saturation velocity determination for In0. 53Ga0. 47As field- effect transistors, Appl. Phys. Lett. 38 (1981) 817-819.
DOI: 10.1063/1.92143
Google Scholar
[21]
S.L. Murray, F.D. Newman, C.S. Murray, et al., MOCVD growth of lattice-matched and mismatched InGaAs materials for themophotovoltaic energy conversion, Semicond. Sci. Technol. 18 (2003) s202-s208.
DOI: 10.1088/0268-1242/18/5/309
Google Scholar
[22]
K.J. Bachmann, J.L. Shay, An InGaAs detector for the 1. 0-1. 7μm wavelength range, Appl. Phys. Lett. 32 (1978) 446-448.
DOI: 10.1063/1.90081
Google Scholar
[23]
T. Zhang, G. Miao, Y. Jin, et al., Effect of buffer thickness on properties of In0. 8Ga0. 2As/InP with two-step growth technique, Journal of alloys and compounds, 472 (2009) 587-590.
DOI: 10.1016/j.jallcom.2008.05.078
Google Scholar
[24]
W. Gao, P. R. Berger, M. H. Ervin, et al., Liquid phase epitaxial growth of InGaAs on InP using rare-earth-treated melts, J. Appl. Phys. 80 (1996) 7094-7103.
DOI: 10.1063/1.363721
Google Scholar