InGaAs Nanoflowers Grown by MOCVD

Article Preview

Abstract:

InGaAs nanoflowers have been prepared on InP substrates by MOCVD, using TMIn, TMGa and AsH3 as reactive precursors at 420 oC. Through observation by scanning electron microscopy, we find that InGaAs nanoflowers are composed with blades and rods. The flower patterns are controlled by the growth temperature. The nanoflowers of InGaAs are disappeared, when we alter the growth temperature up and down. The InGaAs nanoflowers are In0.98Ga0.02As.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 560-561)

Pages:

747-750

Citation:

Online since:

August 2012

Keywords:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Z.W. Pan, Z.R. Dai, Z.L. Wang, Nanobelts of semiconducting oxides, Science, 291 (2001) 1947-(1949).

Google Scholar

[2] M.H. Huang, S. Mao, H. Feick, et al., Room-temperature Ultraviolet nanowire nanolasers, Science, 292 (2001) 1897-1899.

DOI: 10.1126/science.1060367

Google Scholar

[3] J. Wang, M.S. Gudiksen, X. Duan, Y. Cui, C.M. Lieber, Highly polarized photoluminescence and photodetection from single indium phosphide nanowires, Science, 293 (2001) 1455-1457.

DOI: 10.1126/science.1062340

Google Scholar

[4] H.W. Suh, G.Y. Kim, Y.S. Jung, W.K. Choi, D. Byun, Growth and properties of ZnO nanoblade and nanoflower prepared by ultrasonic pyrolysis, J. Appl. Phys. 97 (2005) 044305.

DOI: 10.1063/1.1849825

Google Scholar

[5] X.H. Sun, S. Lam, T.K. Sham, et al., Synthesis and synchrotron light-induced luminescence of ZnO nanostructures: Nanowires, Nanoneedles, nanoflowers, and tubular whiskers, J. Phys. Chem. B 109 (2005) 3120-3125.

DOI: 10.1021/jp044926v

Google Scholar

[6] Y. Fang, X. Wen, S. Yang, et al., Hydrothermal synthesis and optical properties of ZnO nanostructured films directly growth from/on Zinc substrates, J. Sol–Gel Sci. Technol. 36 (2005) 227-234.

DOI: 10.1007/s10971-005-3563-7

Google Scholar

[7] A. Narayanaswamy, H. Xu, N. Pradhan, et al., Formation of nearly monodisperse In2O3 nanodots and oriented-attached nanoflowers: hydrolysis and alcoholysis vs pyrolysis, J. Am. Chem. Soc. 128 (2006) 10310-10319.

DOI: 10.1021/ja0627601

Google Scholar

[8] F. Xu, K. Yu, G. Li, et al., Synthesis and field emission of four kinds of ZnO nanostructures: nanosleeve-fishes, radial nanowire arrays, nanocombs and nanoflowers, Nanotechnology 17 (2006) 28552859.

DOI: 10.1088/0957-4484/17/12/005

Google Scholar

[9] W.T. Yao, S.H. Yu, S.J. Liu, et al., Architectural control syntheses of CdS and CdSe nanoflowers, branched nanowires, and nanotrees via a solvothermal approach in a mixed solution and their photocatalytic property, J. Phys. Chem. B 110 (2006).

DOI: 10.1021/jp060164n.s001

Google Scholar

[10] A.L. Yarin, A.G. Yazicioglu, C.M. Megaridis, Thernal stimulation of aqueous volumes contained in carbon nanotubes: experiment and modeling, Appl. Phys. Lett. 86 (2005) 013109.

DOI: 10.1063/1.1844602

Google Scholar

[11] R. Ma, Y. Bando, In-Ni microballs catalyzed growth of dense and highly aligned silica nanowires, Chem. Phys. Lett. 377 (2003) 177-183.

DOI: 10.1016/s0009-2614(03)01156-4

Google Scholar

[12] Y.Q. Zhu, W. K. Hsu, M. Terrones, et al., Microscopy study of the growth process and structural features of Silicon Oxide nanoflowers, Chem. Mater. 11 (1999) 2709-2715.

DOI: 10.1021/cm9910052

Google Scholar

[13] M.T. Hsiao, S.F. Chen, D.B. Shieh, et al., One-pot synthesis of hollow Au3Cu1 spherical-like and biomineral botallackite Cu2(OH)3Cl flowerlike architectures exhibiting antimicrobial activity, J. Phys. Chem. B 110 (2006) 205-210.

DOI: 10.1021/jp054827x.s001

Google Scholar

[14] L. Qian, X. Yang, Polyamidoamine dendrimers-assisted electrodeposition of gold-platinum bimetallic nanoflowers, J. Phys. Chem. B 110 (2006) 16672-16678.

DOI: 10.1021/jp063302h

Google Scholar

[15] T. Wang, X. Hu, S. Dong, Surfactantless synthesis of multiple shapes of gold nanostructures and their shape-dependent SERS spectroscopy, J. Phys. Chem. B 110 (2006) 16930-16936.

DOI: 10.1021/jp062486x

Google Scholar

[16] X. Ma, B. Yuan, Fabrication of carbon nanoflowers by plasma-enhanced chemical vapor deposition, Appl. Surf. Sci. 255 (2009) 7846-7850.

DOI: 10.1016/j.apsusc.2009.03.061

Google Scholar

[17] J. Ahn, M. A. Mastro, J. Hite, et al., Elctroluminescence from ZnO nanoflowers/GaN thin film p-n heterojunction, App. Phys. Lett. 97(2010) 082111.

DOI: 10.1063/1.3481415

Google Scholar

[18] X. Qing, S. Liu, K. Huang, et al., Facile synthesis of Co3O4 nanoflowers grown on Ni foam with superior electrochemical perfornance, Electrochimica Acta, 56 (2011) 4985-4991.

DOI: 10.1016/j.electacta.2011.03.118

Google Scholar

[19] H. Nagai, Y. Noguchi, Crack formation InP-GaxIn1-xAs-InP double –heterostructure fabrication, Appl. Phys. Lett. 29 (1976) 740-741.

DOI: 10.1063/1.88923

Google Scholar

[20] S. Bandy, C. Nishimoto, S. Hyder, C. Hooper, Saturation velocity determination for In0. 53Ga0. 47As field- effect transistors, Appl. Phys. Lett. 38 (1981) 817-819.

DOI: 10.1063/1.92143

Google Scholar

[21] S.L. Murray, F.D. Newman, C.S. Murray, et al., MOCVD growth of lattice-matched and mismatched InGaAs materials for themophotovoltaic energy conversion, Semicond. Sci. Technol. 18 (2003) s202-s208.

DOI: 10.1088/0268-1242/18/5/309

Google Scholar

[22] K.J. Bachmann, J.L. Shay, An InGaAs detector for the 1. 0-1. 7μm wavelength range, Appl. Phys. Lett. 32 (1978) 446-448.

DOI: 10.1063/1.90081

Google Scholar

[23] T. Zhang, G. Miao, Y. Jin, et al., Effect of buffer thickness on properties of In0. 8Ga0. 2As/InP with two-step growth technique, Journal of alloys and compounds, 472 (2009) 587-590.

DOI: 10.1016/j.jallcom.2008.05.078

Google Scholar

[24] W. Gao, P. R. Berger, M. H. Ervin, et al., Liquid phase epitaxial growth of InGaAs on InP using rare-earth-treated melts, J. Appl. Phys. 80 (1996) 7094-7103.

DOI: 10.1063/1.363721

Google Scholar