Proportional-Integral Control for Markovian Jumping Systems with Distributed Time Delay

Article Preview

Abstract:

This paper deals with the proportional-integral control problem for a class of stochastic Markovian jum v-Krasovskii functional and free-weighting matrix method, the novel delay-dependent robust stabilization criterion for the stochastic Markovian jumping systems is formulated in terms of linear matrix inequality (LMI). When the LMI is feasible, an explicit expression of the desired proportional-integral controller is given. Designed controller, based on the obtained criterion, ensures asymptotically stable in the mean square sense of the resulting closed-loop system for all admissible uncertainties and time delay.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 562-564)

Pages:

1689-1692

Citation:

Online since:

August 2012

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Guillermo J. Silva, Aniruddha Datta, and S.P. Bhattacharyya, PI stabilization of first-order systems with time delay, Automatica, Vol. 37 (2001), p.2025-(2031).

DOI: 10.1016/s0005-1098(01)00165-0

Google Scholar

[2] N. Tan, Computation of stabilizing PI and PID controllers for processes with time delay. ISA Trans. Vol. 44(2005), p.213–223.

DOI: 10.1016/s0019-0578(07)90000-2

Google Scholar

[3] Z. Nie, Q. Wang, M. Wu, and Y. He, Tuning of multi-loop PI controllers based on gain and phase margin specifications, Journal of Process Control, Vol. 21(2011), pp.1287-1295.

DOI: 10.1016/j.jprocont.2011.07.009

Google Scholar

[4] S. Hamamci, and N. Tan, ISA Trans. Design of PI controllers for achieving time and frequency domain specifications simultaneously, ISA Trans. Vol. 45(2006), pp.529-543.

DOI: 10.1016/s0019-0578(07)60230-4

Google Scholar

[5] S. He, and F. Liu, Robust stabilization of stochastic Markovian jumping systems via proportional-integral control, Signal Processing, Vol. 91(2011), pp.2478-2486.

DOI: 10.1016/j.sigpro.2011.04.023

Google Scholar

[6] Y. Wang, Delay-range-dependent control for stochastic systems with time delay, Proc. Int. Conf. on ICICTA 2009, Zhangjiajie, China, pp.766-769.

Google Scholar

[7] Y. Wang, H. Zhang, and X. Liu, Robust control based on fuzzy hyperbolic model with time-delay, Progress in Natural Science, vol. 18(2008), pp.1429-1435.

DOI: 10.1016/j.pnsc.2008.05.014

Google Scholar

[8] H. Zhang, J. Yang and C. Su, T-S fuzzy-model-based robust H-infinite design for networked control systems with uncertainties, IEEE Transactions on Industrial Informatics. Vol. 3(2007), pp.289-301.

DOI: 10.1109/tii.2007.911895

Google Scholar

[9] F. Gouaisbaut, and Y. Ariba, Delay range stability of a class of distributed time delay systems, Systems and Control Letters, Vol. 60(2011), pp.211-217.

DOI: 10.1016/j.sysconle.2010.12.005

Google Scholar

[10] E. Fridman, and G. Tsodik, control of distributed and discrete delay systems via discretized Lyapunov functional. European Journal of Control, Vol. 15(2009), pp.84-96.

DOI: 10.3166/ejc.15.84-94

Google Scholar

[11] R. Mahboobi Esfanjani, S.K.Y. Nikravesh, Stabilizing model predictive control for constrained nonlinear distributed delay systems, ISA Transactions, 50(2011), pp.201-206.

DOI: 10.1016/j.isatra.2010.12.005

Google Scholar

[12] Z. Wang, Y. Liu, G. Wei, X. Liu, A note on control of a class of discrete-time stochastic systems with distributed delays and nonlinear disturbances, Automatica, Vol. 46 (2010), pp.543-548.

DOI: 10.1016/j.automatica.2009.11.020

Google Scholar

[13] L. Xie, M. Fu, and C. E. de Souza, control and quadratic stabilization of systems with parameter uncertainty via output feedback, IEEE Trans. Autom. Contr., vol. 37(1992), pp.1253-1256.

DOI: 10.1109/9.151120

Google Scholar