[1]
J. Park and I. W. sandberg, Universal approximation using radial basis function networks, Neural Comput., 3(1991), pp.246-257.
DOI: 10.1162/neco.1991.3.2.246
Google Scholar
[2]
S. A. Kassam and I. Cha, Radial basis function networks in nonlinear signal processing, in Proc. IEEE 27th Annu. Asilomar Conf. Signals, Syst., Comput., 2(1993), pp.1021-1025.
DOI: 10.1109/acssc.1993.342415
Google Scholar
[3]
S. Chen, C. F. N. Cowan, and P. M. Grant, Orthogonal least squares learning algorithm for radial basis function networks, IEEE Trans. Neural Netw., 2(2)(1991), p.302–309.
DOI: 10.1109/72.80341
Google Scholar
[4]
V. Kadirkamanathan and M. Niranjan, A function estimation approach to sequential learning with neural networks, Neural Comput., 5(1993), p.954–975.
DOI: 10.1162/neco.1993.5.6.954
Google Scholar
[5]
G. B. Huang, P. Saratchandran, N. Sundararajan, An generalized growing and pruning RBF (GGAP-RBF) neural network for function approximation, IEEE Trans. Neural Networks, 16(1)(2005), pp.57-67.
DOI: 10.1109/tnn.2004.836241
Google Scholar
[6]
H. Q. Zhao, J. S. Zhang. Adaptively combined FIR and functional link neural network equalizer for nonlinear communication channel, IEEE Transactions on Neural Networks, 20(4)(2009), pp.665-674.
DOI: 10.1109/tnn.2008.2011481
Google Scholar
[7]
H. Q. Zhao, X. P. Zeng, J. S. Zhang, X. Q. Zhang, Y. G. Liu and T. Wei, Adaptive decision feedback equalizer using the combination of the FIR and FLNN, Digital Signal Processing, 21(2011), pp.679-689.
DOI: 10.1016/j.dsp.2011.05.004
Google Scholar
[8]
L. A. Azpicueta-Ruiz, M. Zeller, A. R. Figueiras-Vidal, J. Arenas-Garcia, and W. Kellermann, Adaptive combination of Volterra kernels and its application to nonlinear acoustic echo cancellation, IEEE Trans. Audio, Speech, and Language Processing, 19(1) (2011).
DOI: 10.1109/tasl.2010.2045185
Google Scholar