Influence of Deposition Time on ZnO Films Grown by RF Magnetron Sputtering

Article Preview

Abstract:

ZnO thin films were prepared on glass substrates by radio frequency co-reactive magnetron sputtering at different deposition time of 20, 40, 60 and 80 min. Surface morphologies and crystal structures were examined using atomic force microscopy and X-ray diffraction. As the deposition time increased to 60 min, surface morphologies of the films became smooth and distributed uniformly. The crystallinity along the c-axis improved as the deposition time increased. The photoluminescence (PL) studies indicate that three main emission peaks located at 439nm, 483nm and 525nm were observed. The intensity of 439nm emission increased to maximum as the deposition time was 80 min, while the intensity of green emission band (from 483 to 525nm) attained to maximum as the deposition time increased to 60 min.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 562-564)

Pages:

175-178

Citation:

Online since:

August 2012

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J.G. Lu, Z.Z. Ye, F. Zhuge, Y.J. Zeng, B.H. Zhao, L.P. Zhu: Appl. Phys. Lett., 2004, 85, 3134.

Google Scholar

[2] Z. K. Tang, G. K. L. Wong, P. Yu, M. Kawasaki, A. Ohtomo, H. Koinuma, Y. Segawa: Appl. Phys. Lett., 1998, 72, 3270.

Google Scholar

[3] S. A. Studenikin, N. Golego, M. Cocivera: J. Appl. Phys., 1998, 84 (4), 2287.

Google Scholar

[4] M. Bender, E. Gagaoudakis, E. Douloufakis, E. Natsakou, N. Katsarakis, V. Cimalla: Thin Solid Films, 2002, 418, 45.

DOI: 10.1016/s0040-6090(02)00588-6

Google Scholar

[5] S. Roy, S. Basu: Bull. Mater. Sci., 2002, 25 (6), 513.

Google Scholar

[6] H. W. Ryu, B. S. Park, S. A. Akbar, W. S. Lee, K. J. Hong, Y. J. Seo: Sen. Actuators, B: Chem., 2003, 96 (3), 717.

Google Scholar

[7] W. Water, S. Y. Chu: Mater. Lett., 2002, 55, 67.

Google Scholar

[8] Y. M. Lu, W. S. Hwang, W. Y. Liu, J. S. Yang: Mater. Chem. Phys., 2001, 72 (2), 269.

Google Scholar

[9] P. Nunes, D. Costa, E. Fortunato, R. Martins: Vacuum, 2002, 64 (3–4), 293.

Google Scholar

[10] M. L. Olvera, A. Maldonado, R. Asomoza, S. Tirado-Guerra: Thin Solid Films., 2002, 411, 198.

DOI: 10.1016/s0040-6090(02)00248-1

Google Scholar

[11] B. S. Li, Y. C. Liu, D. Z. Shen, J. Y. Zhang, Y. M. Lu, X. W. Fan: J. Cryst. Growth., 2003, 249, 179.

Google Scholar

[12] B, Kotlyarchuk, V, Savchuk, M. Oszwaldowski: Cryst. Res. Technol., 2005, 40(12), 1118.

Google Scholar

[13] R.O. Ndong, F.P. Delannoy, A. Boyer, A. Giani, A. Foucaran: Mater. Sci. Eng. B, 2003, 97, 68.

Google Scholar

[14] H. Wookim, N. Hokim: Mater. Sci. Eng. B, 2003, 103, 297.

Google Scholar

[15] W. T. Lim, C. H. Lee: Thin Solid Films, 1999, 353, 12.

Google Scholar

[16] Z. Wang, L. Hu, J. Zhao, J. Sun, Z. Wang: Vacuum, 2005, 78, 53.

Google Scholar

[17] G. Du, J. Wang, X. Wang, X. Jiang, S. Yang, Y. Ma, W. Yan, D. Gao, X. Liu, H. Cao, J. Xu, R.P.H. Chang, Vacuum, 2003, 69, 473.

Google Scholar