Fabric Defect Detection Based on Local Entropy

Article Preview

Abstract:

To solve the problem of automated defect detection for textile fabrics, this paper proposed a method for fabric defect detection which is based on local entropy. The method can transform the original gray image space for the entropy space and enhance the different organization structure which is conducive to extract the damage texture region. In the experiment, divided the fabric image to the same size local window, and chosen the smallest value of local entropy window region to segment the defects. The experimental result shown that this method can avoid the whole image complex operations and possess high recognition accuracy.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 562-564)

Pages:

1998-2001

Citation:

Online since:

August 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Roberts J. W, Rose S. D, Jullian G. A, Nichols G. A, Jenkins L, Chamberlain P, Maroscher S. G. (1993). PC based real-time defect imaging system for high speed web inspection, Proc. SPIE. 1907: 164–176.

DOI: 10.1117/12.144808

Google Scholar

[2] Yang D, Jackson M. R, Parkin R. M. (2006). Inspection of wood surface waviness defects using the light sectioning method, Proceedings of the Institution of Mechanical Engineers - I. 220(7): 617-626.

DOI: 10.1243/09596518jsce175

Google Scholar

[3] Srinivasan K, Dastoor P. H, Radhakrishnaiah P, Jayaraman S. (1992). FDAS: aknowledge-based framework for analysis of defects in woven textile structures, Part 1, J. Text. Inst. 83(3): 431–448.

DOI: 10.1080/00405009208631217

Google Scholar

[4] Stojanovic R, Mitropulos P, Koulamas C, Karayiannis Y, Koubias S, Papadopoulos G. (2000). An approach for automated defect detection and neural classification of web textile fabric, Mach Graph Vis. 9(3): 587–607.

DOI: 10.1109/icecs.1999.813221

Google Scholar

[5] Cohen F. S, Fan Z, Attalt S. (1991). Automated inspection of textile fabric using textural models, IEEE Transactions on Pat-tern Analyses and Machine Intelligence. 13(8): 345-350.

DOI: 10.1109/34.85670

Google Scholar

[6] Wen C. Y, Chiu S. H, Hsuw S. (2001). Defect segmentation of texture imageswith wavelet transform and a co-occurrence matrix, Textile Res J. 71(8): 743-749.

DOI: 10.1177/004051750107100815

Google Scholar

[7] Tsai D, Huang T. (2003). Automated surface inspection for statistical textures, Image and Vision Computing . 21: 307–323.

DOI: 10.1016/s0262-8856(03)00007-6

Google Scholar

[8] Yang X. Z, Pang G. K. H, Yung NH. C. (2002). Discriminative fabric defect detection using adaptive wavelet, Optical Engineer. 41(12): 3116-3126.

DOI: 10.1117/1.1517290

Google Scholar

[9] Y. Zhang, Z. Lu, J. Li. (2010). Fabric Defect Detection and Classification Using Gabor Filters and Gaussian Mixture Model, Asian Conf. Computer Vision (ACCV2009), Part II, Lecture Notes in Computer Science 5995, p.635–644.

DOI: 10.1007/978-3-642-12304-7_60

Google Scholar

[10] Thierry Pun. 1980. A new method for gray-level picture thresholding using the entropy of the histogram. Signal Process. 2(3), 223–237.

DOI: 10.1016/0165-1684(80)90020-1

Google Scholar

[11] Shannon, C.E., 1948. A mathematical theory of communication. Bell System Tech. J. 27, 379–423.

Google Scholar