EM-Based Nonideal Iris Boundary Localization

Article Preview

Abstract:

Nonideal iris segmentation is a great challenge in iris recognition, and many researchers have stressed this problem. Since critical step of segmentation is localizing iris center and detecting interior/outer boundaries, we presents a novel method based on EM algorithm to deal with it. EM algorithm is capable of automatic threshold, therefore candidate pupil can be obtained and followed by an innovated fast iris center searching by using strings equilibrium scheme. We also give the region-based outer boundary localization with implementation of order statistical filters (OSF). Experiments demonstrate a high correct segmentation ratio (CSR) of more than 98% has been achieved when using CASIA-IrisV3 Interval and CASIA-IrisV3 Lamp databases.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 562-564)

Pages:

2073-2078

Citation:

Online since:

August 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A K Jain, A Ross, S Pankanti. Biometrics: a tool for information security. IEEE Trans. Information Forensics and Security, 2006, 1 (2), 125-143.

DOI: 10.1109/tifs.2006.873653

Google Scholar

[2] K W Bowyer, K Hollingsworth, P J Flynn. Image-understanding for iris biometrics: a survey. Computer Vision and Image Understanding, 2008, 110 (2): 281-307.

DOI: 10.1016/j.cviu.2007.08.005

Google Scholar

[3] J Daugman. How iris recognition works. IEEE Trans. CSVT, 2004, 14 (1): 21-30.

Google Scholar

[4] J Daugman. High confidence visual recognition of persons by a test of statistical independence. IEEE Trans. Pattern Analysis and Machine Intelligence, 1993, 15 (11): 1148-1161.

DOI: 10.1109/34.244676

Google Scholar

[5] R Wildes. Iris recognition: an emerging biometrics technology. Proc IEEE 1997, (9): 1348-1363.

Google Scholar

[6] W Boles, B Boashah. A human identification technique using images of the iris and wavelet transform. IEEE Trans. Signal Processing, 1998, 46 (4): 1185-1188.

DOI: 10.1109/78.668573

Google Scholar

[7] J Daugman. New methods in iris recognition. IEEE Trans. System, Man, and Sybernetics—Part B: Cybernetics, 2007, 37 (5): 1167-1175.

DOI: 10.1109/tsmcb.2007.903540

Google Scholar

[8] S. Shah, A. Ross. Iris segmentation using geodesic active contours. IEEE Information Forensics and Security, vol. 4 (4), pp.824-836, (2009).

DOI: 10.1109/tifs.2009.2033225

Google Scholar

[9] L Yu, D Zhang, K Wang. The relative distance of key point based iris recognition. Pattern Recognition, 2007, 40 (2): 423-430.

DOI: 10.1016/j.patcog.2006.03.008

Google Scholar

[10] L Ma, T Tan, Y Wang, D Zhang. Efficient iris recognition by characterizing key local variations. IEEE Trans. Image Processing, 2004, 13 (6): 739-750.

DOI: 10.1109/tip.2004.827237

Google Scholar

[11] N. Puhan, N. Sudha, A. Kaushalram. Efficient segmentation technique for noisy frontal view iris images using Fourier spectral density. SIVP, 2009, 5 (1): 105-119.

DOI: 10.1007/s11760-009-0146-z

Google Scholar

[12] J. Zuo, N. A. Schmid. An automatic algorithm for evaluating the precision of iris segmentation. IEEE Conference on BTAS, 2008: 1-6.

Google Scholar

[13] Peihua Li, Xiaomin Liu, Lijuan Xiao, Qi Song. Robust and accurate iris segmentation in very noisy iris images. Image and Vision Computing, 2010, 28 (2): 246-253.

DOI: 10.1016/j.imavis.2009.04.010

Google Scholar

[14] Y. Chen, M. Adjouadi, Changan Han, Jin Wang, A. Barreto, N. Rishe, J. AndrianA. Highly accurate and computationally efficient approach for unconstrained iris segmentation. Image and Vision Computing, 2010, 18 (2): 261-269.

DOI: 10.1016/j.imavis.2009.04.017

Google Scholar

[15] S. J. Pundlik, D. L. Woodard, S. T. Birchfield. Non-ideal iris segmentation using graph cuts. Proc. IEEE CVPR, 2008: 1-6.

DOI: 10.1109/cvprw.2008.4563108

Google Scholar

[16] Z He, T Tan, Z Sun, X Qiu. Toward accurate and fast iris segmentation for iris biometrics. IEEE Trans. Pattern Analysis and Machine Intelligence, 2009, 31 (9): 1670-1684.

DOI: 10.1109/tpami.2008.183

Google Scholar

[17] J Zuo, N A Schmid. On a methodology for robust segmentation of nonideal iris images. IEEE Trans. Systems, Man, and Cybernetics, 2010, 40 (3): 703-718.

DOI: 10.1109/tsmcb.2009.2015426

Google Scholar

[18] A Dempster, N Laird, D Robin. Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society, Series B, 1977, 39 (1): 1-38.

DOI: 10.1111/j.2517-6161.1977.tb01600.x

Google Scholar

[19] G McLachlan, T Krishnan. The EM algorithm and extensions. Wiley series in probability and statistics, John Wiley & Sons, (2008).

DOI: 10.1002/9780470191613

Google Scholar

[20] M Do, M Vetterli. Framing pyramids. IEEE Trans. Signal Processing, 2003, 51 (9): 2329-2342.

DOI: 10.1109/tsp.2003.815389

Google Scholar

[21] G Arce, M Tian. Order statistic filter banks. IEEE Trans. IP, 1996, 5 (6): 827-837.

DOI: 10.1109/83.503902

Google Scholar

[22] http: /www. cbsr. ia. ac. cn/irisdatabase. htm.

Google Scholar