[1]
A K Jain, A Ross, S Pankanti. Biometrics: a tool for information security. IEEE Trans. Information Forensics and Security, 2006, 1 (2), 125-143.
DOI: 10.1109/tifs.2006.873653
Google Scholar
[2]
K W Bowyer, K Hollingsworth, P J Flynn. Image-understanding for iris biometrics: a survey. Computer Vision and Image Understanding, 2008, 110 (2): 281-307.
DOI: 10.1016/j.cviu.2007.08.005
Google Scholar
[3]
J Daugman. How iris recognition works. IEEE Trans. CSVT, 2004, 14 (1): 21-30.
Google Scholar
[4]
J Daugman. High confidence visual recognition of persons by a test of statistical independence. IEEE Trans. Pattern Analysis and Machine Intelligence, 1993, 15 (11): 1148-1161.
DOI: 10.1109/34.244676
Google Scholar
[5]
R Wildes. Iris recognition: an emerging biometrics technology. Proc IEEE 1997, (9): 1348-1363.
Google Scholar
[6]
W Boles, B Boashah. A human identification technique using images of the iris and wavelet transform. IEEE Trans. Signal Processing, 1998, 46 (4): 1185-1188.
DOI: 10.1109/78.668573
Google Scholar
[7]
J Daugman. New methods in iris recognition. IEEE Trans. System, Man, and Sybernetics—Part B: Cybernetics, 2007, 37 (5): 1167-1175.
DOI: 10.1109/tsmcb.2007.903540
Google Scholar
[8]
S. Shah, A. Ross. Iris segmentation using geodesic active contours. IEEE Information Forensics and Security, vol. 4 (4), pp.824-836, (2009).
DOI: 10.1109/tifs.2009.2033225
Google Scholar
[9]
L Yu, D Zhang, K Wang. The relative distance of key point based iris recognition. Pattern Recognition, 2007, 40 (2): 423-430.
DOI: 10.1016/j.patcog.2006.03.008
Google Scholar
[10]
L Ma, T Tan, Y Wang, D Zhang. Efficient iris recognition by characterizing key local variations. IEEE Trans. Image Processing, 2004, 13 (6): 739-750.
DOI: 10.1109/tip.2004.827237
Google Scholar
[11]
N. Puhan, N. Sudha, A. Kaushalram. Efficient segmentation technique for noisy frontal view iris images using Fourier spectral density. SIVP, 2009, 5 (1): 105-119.
DOI: 10.1007/s11760-009-0146-z
Google Scholar
[12]
J. Zuo, N. A. Schmid. An automatic algorithm for evaluating the precision of iris segmentation. IEEE Conference on BTAS, 2008: 1-6.
Google Scholar
[13]
Peihua Li, Xiaomin Liu, Lijuan Xiao, Qi Song. Robust and accurate iris segmentation in very noisy iris images. Image and Vision Computing, 2010, 28 (2): 246-253.
DOI: 10.1016/j.imavis.2009.04.010
Google Scholar
[14]
Y. Chen, M. Adjouadi, Changan Han, Jin Wang, A. Barreto, N. Rishe, J. AndrianA. Highly accurate and computationally efficient approach for unconstrained iris segmentation. Image and Vision Computing, 2010, 18 (2): 261-269.
DOI: 10.1016/j.imavis.2009.04.017
Google Scholar
[15]
S. J. Pundlik, D. L. Woodard, S. T. Birchfield. Non-ideal iris segmentation using graph cuts. Proc. IEEE CVPR, 2008: 1-6.
DOI: 10.1109/cvprw.2008.4563108
Google Scholar
[16]
Z He, T Tan, Z Sun, X Qiu. Toward accurate and fast iris segmentation for iris biometrics. IEEE Trans. Pattern Analysis and Machine Intelligence, 2009, 31 (9): 1670-1684.
DOI: 10.1109/tpami.2008.183
Google Scholar
[17]
J Zuo, N A Schmid. On a methodology for robust segmentation of nonideal iris images. IEEE Trans. Systems, Man, and Cybernetics, 2010, 40 (3): 703-718.
DOI: 10.1109/tsmcb.2009.2015426
Google Scholar
[18]
A Dempster, N Laird, D Robin. Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society, Series B, 1977, 39 (1): 1-38.
DOI: 10.1111/j.2517-6161.1977.tb01600.x
Google Scholar
[19]
G McLachlan, T Krishnan. The EM algorithm and extensions. Wiley series in probability and statistics, John Wiley & Sons, (2008).
DOI: 10.1002/9780470191613
Google Scholar
[20]
M Do, M Vetterli. Framing pyramids. IEEE Trans. Signal Processing, 2003, 51 (9): 2329-2342.
DOI: 10.1109/tsp.2003.815389
Google Scholar
[21]
G Arce, M Tian. Order statistic filter banks. IEEE Trans. IP, 1996, 5 (6): 827-837.
DOI: 10.1109/83.503902
Google Scholar
[22]
http: /www. cbsr. ia. ac. cn/irisdatabase. htm.
Google Scholar