[1]
O. Karabacak, N. S. Sengor, A dwell time approach to the stability of switched linear systems based on the distance between eigenvector sets. International Journal of Systems Science, Vol. 40 (8) (2009), pp.845-853.
DOI: 10.1080/00207720902974504
Google Scholar
[2]
K. S. Narendra, J. Balakrishman, A common Lyapunov function for stable LTI systems with commuting -matrices. IEEE Transactions on Automatic Control, Vol. 39 (12) (1994), pp.2469-2471.
DOI: 10.1109/9.362846
Google Scholar
[3]
R. Cimochowshi, Stability of positive switched discrete-time linear systems. 15th International Conference on Methods and Models in Automation and Robotics, (2010), pp.207-211.
DOI: 10.1109/mmar.2010.5587233
Google Scholar
[4]
X. Ding, L. Shu and Z. Wang, On stability for switched linear positive systems. Mathematical and Computer Modelling, Vol. 53 (5-6) (2011), pp.1044-1055.
DOI: 10.1016/j.mcm.2010.11.062
Google Scholar
[5]
A. Zappavigna, P. Colaneri, J. C. Geromel and R. Middleton, Stabilization of continuous-time switched linear positive systems. American Control Conference, (2010), pp.3275-3280.
DOI: 10.1109/acc.2010.5530691
Google Scholar
[6]
R. Shorten, F. Wirth and D. Leith, A positive systems model of TCP-like congestion control: asymptotic results. IEEE/ACM Transactions on Networking, Vol. 14 (3) (2006), pp.616-629.
DOI: 10.1109/tnet.2006.876178
Google Scholar
[7]
G. Zhai, H. Lin, A. N. Michel and K. Yasuda. Stability analysis for switched systems with continuous-time and discrete-time subsystems. Proceeding of the 2004 American Control Conference, Vol. 5 (2004), p.4555.
DOI: 10.23919/acc.2004.1384029
Google Scholar
[8]
E. Fornasini, M.E. Valcher, Stabilizability of discrete-time positive switched systems. 49th IEEE Conference on Decision and Control, (2010), p.432–437.
DOI: 10.1109/cdc.2010.5717721
Google Scholar
[9]
J. P. Hespanha, Uniform stability of switched linear systems: extensions of LaSalle's invariance principle. IEEE Trans. on Auto. Cont., Vol. 49 (4) (2004), pp.470-482.
DOI: 10.1109/tac.2004.825641
Google Scholar
[10]
A. Zappavigna, P. Colaneri, J. C. Geromel and R. Shorten, Dwell time analysis for continuous-time switched linear positive systems. American Control Conference, (2010), p.6256 – 6261.
DOI: 10.1109/acc.2010.5531524
Google Scholar
[11]
K. L. Cooke, Z. Grossman, Discrete delay, distributed delay and stability switches. Journal of Mathematical Analysis and Applications, Vol. 86 (2) (1982), pp.592-627.
DOI: 10.1016/0022-247x(82)90243-8
Google Scholar