[1]
Zadeh, L.A.: Fuzzy sets, Inform. Control 8 (1965) 338-353.
Google Scholar
[2]
Zadeh, L.A.: The concept of a linguistic variable and its application to approximate reasoning (I), Inform. Sci. 8 (1975) 199-249.
DOI: 10.1016/0020-0255(75)90036-5
Google Scholar
[3]
Zadeh, L.A.: The concept of a linguistic variable and its application to approximate reasoning (II), Inform. Sci. 8 (1975) 301-357.
DOI: 10.1016/0020-0255(75)90046-8
Google Scholar
[4]
Zadeh, L.A.: The concept of a linguistic variable and its application to approximate reasoning (III), Inform. Sci. 9 (1975) 43-80.
DOI: 10.1016/0020-0255(75)90017-1
Google Scholar
[5]
Bustince, H. and Burillo, P.: Mathematical analysis of interval-valued fuzzy relations: Application to approximate reasoning, Fuzzy Sets and Systems 113 (2000), 205-219.
DOI: 10.1016/s0165-0114(98)00020-7
Google Scholar
[6]
Turksen, I.B.: Interval-valued fuzzy sets based on normal forms, Fuzzy Sets and Systems 20(1986) 191-210.
DOI: 10.1016/0165-0114(86)90077-1
Google Scholar
[7]
Zeng, W.Y. and Shi Y.: Note on interval-valued fuzzy set, Lecture Notes in Artificial Intelligence 3316(2005) 20-25.
Google Scholar
[8]
Zeng, W.Y., Shi Y. and Li H.X.: Representation theorem of interval-valued fuzzy set, Internat. J. Uncer. Fuzzi. Knowloedge-Based Systems 14 (2006) 259-269.
DOI: 10.1142/s0218488506003996
Google Scholar
[9]
Wang, P.Z.: Mathematical theory of truth-valued flow inference, Fuzzy Sets and Systems 72(1995) 221-238.
DOI: 10.1016/0165-0114(94)00354-a
Google Scholar
[10]
Zeng, W.Y. and Li, H.X.: Inner product truth-valued flow inference, International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems 13 (2005) 601-612.
DOI: 10.1142/s0218488505003692
Google Scholar
[11]
Fukami, S., Mizumoto, M. and Tanaka, K.: Some considerations on fuzzy conditional inference, Fuzzy Sets and Systems 4 (1980) 243-273.
DOI: 10.1016/0165-0114(80)90014-7
Google Scholar
[12]
Mizumoto, M. and Zimmermann, H. -J.: Comparison of fuzzy reasoning methods, Fuzzy Sets and Systems 8 (1982) 253-283.
DOI: 10.1016/s0165-0114(82)80004-3
Google Scholar
[13]
Li, H.X.: Interpolation mechanism of fuzzy control, Science in China, Ser. E 41 (1998) 312-320.
Google Scholar
[14]
Gorzalczany, M.B.: A method of inference in approximate reasoning based on interval-valued fuzzy sets, Fuzzy Sets and Systems 21 (1987) 1-17.
DOI: 10.1016/0165-0114(87)90148-5
Google Scholar
[15]
Gorzalczany, M.B.: An interval-valued fuzzy inference method -some basic properties, Fuzzy Sets and Systems 31 (1989) 243-251.
DOI: 10.1016/0165-0114(89)90006-7
Google Scholar
[16]
Chen, S.M., Hsiao, W.H. and Jong, W.T.: Bidirectional approximate reasoning based on interval-valued fuzzy sets, Fuzzy Sets and Systems 91 (1997) 339-353.
DOI: 10.1016/s0165-0114(97)86594-3
Google Scholar
[17]
Chen, S.M. and Hsiao, W.H.: Bidirectional approximate reasoning for rule-based systems using interval-valued fuzzy sets, Fuzzy Sets and Systems 113 (2000) 185-203.
DOI: 10.1016/s0165-0114(98)00351-0
Google Scholar
[18]
Chun, M.G.: A similarity-based bidirectional approximate reasoning method for decision-making systems, Fuzzy Sets and Systems 117 (2001) 269-278.
DOI: 10.1016/s0165-0114(99)00093-7
Google Scholar
[19]
Wang, P.Z.: Fuzzy Sets and Its Applications (Shanghai Science and Technology Press, Shanghai (1983).
Google Scholar
[20]
Zeng, W.Y. and Li, H.X.: Relationship between similarity measure and entropy of interval-valued fuzzy sets, Fuzzy Sets and Systems 157 (2006) 1477-1484.
DOI: 10.1016/j.fss.2005.11.020
Google Scholar
[21]
Zeng, W.Y. and Wang, J.Y.: Interval-valued fuzzy control, Lecture Notes in Electrical Engineering 67(2010) 173-183.
Google Scholar