Simulation of 1D Abrasive Vibratory Finishing Process

Article Preview

Abstract:

The vibratory finishing process involves three dimensional motion of abrasive media interacting with part surfaces. With the ultimate goal of simulating such media motion in laboratory conditions, we present here a first step that makes use of a tribometer’s recipricating drive to provide one dimensional controlled vibrations. Finishing experiments using this setup are conducted using abrasive media and titanium alloy work material, both of the type typically used in aerospace industry. Material removal rates, surface roughness and contact forces are measured in two different setups. The media motion is also modelled using multi-body dynamics to predict the contact forces between the media and the work surface. Experimental results are seen to follow literature reported and model predicted trends. This work paves the way for a true three dimensional simulator for a vibratory finishing process.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

290-295

Citation:

Online since:

September 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. Matsunaga and Haguida, in: Metal Finishing, vol. 63 (1965), p.52–57.

Google Scholar

[2] S. Wang, R. S. Timsit, and J. K. Spelt in: Wear, vol. 243, no. 1-2 (2000), p.147–156.

Google Scholar

[3] M. R. Baghbanan, A. Yabuki, R. S. Timsit, and J. K. Spelt in: Wear, vol. 255 (2003), p.1369–1379.

DOI: 10.1016/s0043-1648(03)00124-8

Google Scholar

[4] J. Domblesky, V. Cariapa, and R. Evans, in: International Journal of Production Research, vol. 41, no. 16 (2003), p.3943–3953.

DOI: 10.1080/0020754031000152550

Google Scholar

[5] M. Sangid, J. Stori, and P. Ferriera, in: The International Journal of Advanced Manufacturing Technology, vol 53 (2011), p.1–15.

Google Scholar

[6] M. Sangid, J. Stori, and P. Ferriera, in: The International Journal of Advanced Manufacturing Technology, vol. 53 (2011), p.561–575.

Google Scholar

[7] D. Ciampini, M. Papini, and J. K. Spelt, in: Wear, vol. 264, no. 7-8 (2008), p.671–678.

DOI: 10.1016/j.wear.2007.06.002

Google Scholar

[8] A. Mohajerani and J. K. Spelt, in: Wear, vol. 267, no. 9-10 (2009), p.1625–1633.

Google Scholar

[9] A. Yabuki, M. R. Baghbanan, and J. K. Spelt, in: Wear, vol. 252, no. 7-8 (2002), p.635–643.

DOI: 10.1016/s0043-1648(02)00016-9

Google Scholar

[10] D. Ciampini, M. Papini, and J. K. Spelt, in: Journal of Materials Processing Technology, vol. 183, no. 2-3 (2007), p.347–357.

Google Scholar

[11] S. E. Naeini and J. K. Spelt, in: Powder Technology, vol. 195, no. 2 (2009), p.83–90.

Google Scholar

[12] S. E. Naeini and J. K. Spelt, in: Powder technology, vol. 211, no. 1 (2011), p.176–186.

Google Scholar

[13] P. Cundall, S. E. Naeini and J. K. Spelt, in: Proceedings of the International Symposium on Rock Mechanics, Nancy, France (1971).

Google Scholar