[1]
E. Gambi, F. Chiaraluce, and S. Spinsante, Chaos-Based Radars for Automotive Applications: Theoretical Issues and Numerical Simulation, IEEE Transactions on Vehicular Technology. 57(2008) 3858-3863.
DOI: 10.1109/tvt.2008.921632
Google Scholar
[2]
B. C. Flores, E. A. Solis, and G. Thomas, Assessment of chaos-based FM signals for range-doppler imaging, IEE Proc. -Radar Sonar Navig. 150(2003) 313-322.
DOI: 10.1049/ip-rsn:20030728
Google Scholar
[3]
B. Chen, Assessment and improvement of autocorrelation performance of chaotic sequences using a phase space method, Science China Inf. Sci. 54 (2011) 2647-2659.
DOI: 10.1007/s11432-011-4445-y
Google Scholar
[4]
B. Chen, G. H. Liu, J. Tang, etc, Research on chaotic sequence autocorrelation by phase space method, Journal of UESTC. 39(2010) 859-863.
Google Scholar
[5]
J. Myers, and B. C. Flores, Radar imaging via random FM correlations, Proc. SPIE-Int. Soc. Opt. Eng. 3721(1999) 130-139.
Google Scholar
[6]
R. Scholtz, L. R. Welch, Group Characters: Sequence with good correlation properties, IEEE Tran. Inform. Theory. 24(1978) 537-545.
DOI: 10.1109/tit.1978.1055935
Google Scholar
[7]
P. Z. Fan, N. Kuroyanagi, X. M. Deng, Class of binary sequences with zero correlation zone, IEE Electronics Letters. 35(1999) 777-779.
DOI: 10.1049/el:19990567
Google Scholar
[8]
T. Hayashi, A class of two-dimensional binary sequences with zero-correlation zone, IEEE signal processing letters. 9 (2002 ) 217-221.
DOI: 10.1109/lsp.2002.801719
Google Scholar
[9]
J. Wolfmann, Almost perfect autocorrelation sequences, IEEE Transactions on Information Theory. 38(1992) 1412-1418.
DOI: 10.1109/18.144729
Google Scholar
[10]
G. Setti, G. Mazzini, R. Rovatti, etc., Statistical modeling of discrete-time chaotic processes: basic finite-dimensional tools and applications, Proceedings of the IEEE. 90(2002) 662-690.
DOI: 10.1109/jproc.2002.1015001
Google Scholar
[11]
T. Kohda, Information sources using chaotic dynamics, Proceedings of the IEEE. 90(2002) 641-661.
DOI: 10.1109/jproc.2002.1015000
Google Scholar