Synthesis of ZnO Nanoparticle by Solid State Reaction and its Influence on Zinc Electrode

Article Preview

Abstract:

Nanosized ZnO was prepared successfully by solid phase coordination chemistry reaction and characterized by XRD and TEM techniques. The results of CV testing indicated that the peak shapes in CV diagrams were differed for the three electrodes when the scan rate was 1 mV s-1. The mixture electrode (sample D) that nanosized ZnO additives were 50% exhibited remarkable cyclic reversibility. The results indicated that the optimum ratio of ZnO additives were 50% by means of constant current charge-discharge. The rechargeability of the Zn electrode could be improved. But the nanosized ZnO were more effective in modifying Zn electrode than the common ZnO particles. Its discharge capacity at 25th and 30th charge-discharge cycle achieves 220 mAh g-1 and 198 mAh g-1, respectively.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

25-29

Citation:

Online since:

September 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] E. Frackowiak , J.M. Skowronski: J. Power Sources Vol. 73 (1998), p.175.

Google Scholar

[2] J. McBreen, E. Gannon: Electrochim. Acta Vol. 26(1981), p.1439.

Google Scholar

[3] J. McBreen, E. Gannon, J. Power Sources Vol. 15(1985), p.169.

Google Scholar

[4] A. Renuka, A. Veluchamy and N. Venkatakrishnan: J. Appl. Electrochem. Vol. 22(1992), p.182.

Google Scholar

[5] R. Shivkumar, G. Paruthimal Kalaigan and T. Vasudevan: J. Power Sources Vol. 75(1998), p.90.

Google Scholar

[6] D. Coates, E. Ferreira and A. Charkey, J. Power Sources Vol. 65(1997), p.109.

Google Scholar

[7] J.X. Yu, H. Yang, X.P. Ai and X.M. Zhu, J. Power Sources Vol. 103(2001), p.93.

Google Scholar

[8] C.W. Lee, K. Sathiyanarayanan and S.W. Eom, H.S. Kim, M.S. Yun, J. Power Sources Vol. 159(2006), p.1474.

Google Scholar

[9] C.J. Lan, C.Y. Lee and T.S. Chin, Electrochim. Acta Vol. 52(2007), p.5407.

Google Scholar

[10] R. Renuka, S. Ramamurthy and K. Muralidharan, J. Power Sources Vol. 76(1998), p.197.

Google Scholar

[11] R. Renuka, S. Ramamurthy and L. Srinivasan, J. Power Sources Vol. 89(2000), p.70.

Google Scholar

[12] Y.F. Yuan, J.P. Tu, H.M. Wu, B. Zhang, X.H. Huang and X.B. Zhao, Electrochem. Commun. Vol. 8(2006), p.653.

Google Scholar

[13] Y.F. Yuan, J.P. Tu, H.M. Wu, Y.Z. Yang, D.Q. Shi and X.B. Zhao, J. Power Sources Vol. 159(2006), p.357.

Google Scholar

[14] Y. Zheng, J.M. Wang, H. Chen, J.Q. Zhang and C.N. Cao, Mater. Chem. Phys. Vol. 84(2004), p.99.

Google Scholar

[15] Liqun Zhu, Hui Zhang, Ultrason. Sonochem., Vol. 15(2008), p.393.

Google Scholar

[16] E.G. Gagnon, J. Electrochem. Soc. Vol. 133(1986), p. (1989).

Google Scholar

[17] E.G. Ganon, B.S. Hill, J. Electrochem. Soc. Vol. 137(1990), p.377.

Google Scholar

[18] R.A. Sharma, J. Electrochem. Soc. Vol. 135(1988), p.1875.

Google Scholar

[19] E.G. Ganon, Y.M. Wang, J. Electrochem. Soc. Vol. 134(1987), p. (2091).

Google Scholar

[20] S. Martirosyan, J. Power Sources Vol. 172(2007), p.984.

Google Scholar

[21] M. Ma, J.P. Tu, Y.F. Yuan, X.L. Wang, K.F. Li, F. Mao and Z.Y. Zeng, J. Power Sources Vol. 179(2008), p.395.

Google Scholar

[22] H. Huang, L. Zhang, W.K. Zhang, Y.P. Gan and H. Shao, J. Power Sources Vol. 184(2008), p.663.

Google Scholar

[23] L. Zhang, H. Huang W.K. Zhang, Y.P. Gan and C.T. Wang, Electrochimica Acta Vol. 53(2008), p.5386.

Google Scholar

[24] Y.F. Yuan, J.P. Tu, H.M. Wu, D.Q. Shi, Nanotechnology Vol. 16(2005), p.803.

Google Scholar

[25] R Shivkumar, Paruthimal Kalaignan G, T Vasudevan. J. Power Sources Vol. 55(1995), p.53.

DOI: 10.1016/0378-7753(94)02170-8

Google Scholar