Relation between Topological Entropies and Fractal Dimensions of Chaotic Attractors of the Hénon Map

Article Preview

Abstract:

In two-dimensional chaotic dynamics, relationship between fractal dimensions and topological entropies is an important issue to understand the chaotic attractors of Hénon map. we proposed a efficient approach for the estimation of topological entropies through the study on the integral relationship between fractal dimensions and topological entropies. Our result found that there is an approximate linear relation between their topological entropies and fractal dimensions.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

447-450

Citation:

Online since:

September 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] N. Metropolis, PR. Stein, On finite limite sets for transfomations on the unit interval. J Combin Theory A 1973; 15: 24-44.

Google Scholar

[2] MJ. Feigenbaum, Quantitative universality for a class of nonlinear transfomations. J Stat Phys 1978; 19: 25-52.

Google Scholar

[3] MJ. Feigenbaum, The universal metric properties of nonlinear transfomations. J Stat Phys 1979; 21: 669-706.

Google Scholar

[4] B-L Hao, Elementary symbolic dynamics and chaos in dissipative systems. Singapore: Word Scientific; (1989).

Google Scholar

[5] B-L Hao, W-M Zheng, Applied symbolic dynamics and chaos. In: Directions in chaos, vol. 7. Singapore: Word Scientific; (1998).

Google Scholar

[6] K-F Cao, Z Zhou, W Gao, et al., General form of superuniversality for fractal dimensions in one-dimensional maps [J]. Int J Mod Phys B, 2001, 15(32): 4183-4197.

DOI: 10.1142/s0217979201007956

Google Scholar

[7] W-B Zhai, X-Z Chen, K-F Cao, Global regularity of fractal dimensions in quadrumodal maps[J]. Journal of Yunnan University(Natural Sciences Edition), 2004, 26(6): 521-524.

Google Scholar

[8] X-S Zhang, X-D Liu, K.H. Kwek, S-L Peng, Disorder versus order: global multifractal relationship between topological entropies and universal convergence rates [J]. Phys Lett A, 1996, 211(3): 148-54.

DOI: 10.1016/0375-9601(95)00923-x

Google Scholar

[9] W-B Zhai, X-Z Chen, K-F Cao, Global multifractal relation between topological entropies and fractal dimensions[J]. Chaos, Solitons & Fractals, 2004, 23(2): 511-518.

DOI: 10.1016/j.chaos.2004.05.036

Google Scholar

[10] S-L Peng, K-F Cao, Z-X Chen. Devil's stair-case of topological entropy and global metric regularity [J]. Phys Lett A, 1994, 193(5-6): 437-443; 1995, 196(5-6): 378.

DOI: 10.1016/0375-9601(94)00882-p

Google Scholar

[11] K-F Cao, X-S Zhang, Z Zhou, et al., Devil's carpet of topological entropy and complexity of global dynamical behacior [J]. Chaos, Solitond & Fractals, 2003, 16(5): 709-726.

DOI: 10.1016/s0960-0779(02)00405-8

Google Scholar

[12] L-S Young, Dimension, entropy and Lyapunov exponents [J]. Ergod Theory Dynam Syst, 1982, 2: 109-124.

DOI: 10.1017/s0143385700009615

Google Scholar

[13] J.L. KAPLAN, J.A. YORKE, Lecture Notes in Mathematics 730, ed. H D Peitgen, H O Walter, Berlin: Springer, 1979, p.204.

Google Scholar

[14] P. SCHMELCHER, F.K. DIAKONOS, Detecting unstable periodic orbits of chaotic dynamical systems [J]. Phys Rev Lett, 1997, 78(25): 4733-4736.

DOI: 10.1103/physrevlett.78.4733

Google Scholar