[1]
N. Metropolis, PR. Stein, On finite limite sets for transfomations on the unit interval. J Combin Theory A 1973; 15: 24-44.
Google Scholar
[2]
MJ. Feigenbaum, Quantitative universality for a class of nonlinear transfomations. J Stat Phys 1978; 19: 25-52.
Google Scholar
[3]
MJ. Feigenbaum, The universal metric properties of nonlinear transfomations. J Stat Phys 1979; 21: 669-706.
Google Scholar
[4]
B-L Hao, Elementary symbolic dynamics and chaos in dissipative systems. Singapore: Word Scientific; (1989).
Google Scholar
[5]
B-L Hao, W-M Zheng, Applied symbolic dynamics and chaos. In: Directions in chaos, vol. 7. Singapore: Word Scientific; (1998).
Google Scholar
[6]
K-F Cao, Z Zhou, W Gao, et al., General form of superuniversality for fractal dimensions in one-dimensional maps [J]. Int J Mod Phys B, 2001, 15(32): 4183-4197.
DOI: 10.1142/s0217979201007956
Google Scholar
[7]
W-B Zhai, X-Z Chen, K-F Cao, Global regularity of fractal dimensions in quadrumodal maps[J]. Journal of Yunnan University(Natural Sciences Edition), 2004, 26(6): 521-524.
Google Scholar
[8]
X-S Zhang, X-D Liu, K.H. Kwek, S-L Peng, Disorder versus order: global multifractal relationship between topological entropies and universal convergence rates [J]. Phys Lett A, 1996, 211(3): 148-54.
DOI: 10.1016/0375-9601(95)00923-x
Google Scholar
[9]
W-B Zhai, X-Z Chen, K-F Cao, Global multifractal relation between topological entropies and fractal dimensions[J]. Chaos, Solitons & Fractals, 2004, 23(2): 511-518.
DOI: 10.1016/j.chaos.2004.05.036
Google Scholar
[10]
S-L Peng, K-F Cao, Z-X Chen. Devil's stair-case of topological entropy and global metric regularity [J]. Phys Lett A, 1994, 193(5-6): 437-443; 1995, 196(5-6): 378.
DOI: 10.1016/0375-9601(94)00882-p
Google Scholar
[11]
K-F Cao, X-S Zhang, Z Zhou, et al., Devil's carpet of topological entropy and complexity of global dynamical behacior [J]. Chaos, Solitond & Fractals, 2003, 16(5): 709-726.
DOI: 10.1016/s0960-0779(02)00405-8
Google Scholar
[12]
L-S Young, Dimension, entropy and Lyapunov exponents [J]. Ergod Theory Dynam Syst, 1982, 2: 109-124.
DOI: 10.1017/s0143385700009615
Google Scholar
[13]
J.L. KAPLAN, J.A. YORKE, Lecture Notes in Mathematics 730, ed. H D Peitgen, H O Walter, Berlin: Springer, 1979, p.204.
Google Scholar
[14]
P. SCHMELCHER, F.K. DIAKONOS, Detecting unstable periodic orbits of chaotic dynamical systems [J]. Phys Rev Lett, 1997, 78(25): 4733-4736.
DOI: 10.1103/physrevlett.78.4733
Google Scholar