Random Lasing Emission Form Granular-Surface PS/PMMA Blend Films

Article Preview

Abstract:

The random lasing emission from granular-surface PS:PMMA:Alq3:DCJTB blend films was investigated. By micro-phase separation of PS:PMMA:Alq3:DCJTB blend in spin-coating and solvent evaporation process, we obtained a granular-surface waveguide film with gain on glass substrates, whose period is about 200~500nm, and fluctuation is about 20nm. Pumped by THG YAG laser, a significant random laser emission was observed. Compared with the samples of glass/PMMA:Alq3:DCJTB and glass/ PS:Alq3:DCJTB prepared under the same conditions, the laser threshold decreased about 5 times, the line width at half (FWHM) reduced to 1.7nm from more than ten nm, and the quality factor of laser peak increased 7-9 times.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

110-114

Citation:

Online since:

September 2012

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] N. M. Lawandy, R. M. Balachandran, A. S. L. Gomes: Nature, Vol. 368(1994), pp.436-438.

Google Scholar

[2] H. Cao, Y. G. Zhao, S. T. Ho, et al.: Phys. Rev. Lett., Vol. 82(1999), pp.2278-2281.

Google Scholar

[3] Cao H:J. Phys. A: Math. Gen. Vol. 38(2005), pp.10497-535.

Google Scholar

[4] D. S. Wiersma: Nat. Phys., Vol. 4(2008), pp.359-367.

Google Scholar

[5] Noginov M A, Noginova N E, Caulfield H J, Venkateswarl P and Mahdi M: Opt. Commun, Vol. 118(1995), pp.430-437.

Google Scholar

[6] Polson R C, Chipoline A and Vardeny Z V: Adv. Mater. Vol. 13(2001), pp.760-764.

Google Scholar

[7] Zacharakis G, Papadogiannis N A, Pilippidis G and Papazoglou T G: Opt. Lett. Vol. 25(2000), pp.923-925.

Google Scholar

[8] H. Cao, Y.G. Zhao, S. T. Ho, E.W. Seelig, Q.H. Wang, and R. P.H. Chang: Phys. Rev. Lett. Vol. 82(1999), pp.2278-2281.

Google Scholar

[9] Cao H, Ling Y, Xu J Y, Cao C Q and Kumar P: Phys. Rev. Lett. Vol. 86(2001), pp.4524-4527.

Google Scholar

[10] Frolov S V, Vardeny Z V, Zakhidov A A and Baughman R H: Opt. Commun. Vol. 162(1999), pp.241-246.

Google Scholar

[11] Wiersma D and Cavalier S. Light emission: Nature, 2001, 414: 708-709.

Google Scholar

[12] A. Tulek, R. C. Polson and Z. V. Vardeny: Nature Physics, Vol. 6(2010), pp.303-310.

Google Scholar

[13] Claire Bouvy, Evgeny Chelnokov, RuiZhao, et al: Nanotechnology, Vol. 19(2008), p.105710.

Google Scholar

[14] R. C. Polson, A. Chipouline, and Z. V. Vardeny, Adv. Mater. Vol. 13 (2001), p.760.

Google Scholar

[15] Piers Andrew and William L. Barnes: Science, Vol. 290(2000), p.785.

Google Scholar

[16] Koschorreck M, Gehlhaar R, Lyssenko V G, et al: Appl. Phys. Lett. Vol. 87(2005), p.181108.

Google Scholar

[17] C. Ton-That, A.G. Shard, R. Daley, and R.H. Bradley: Macromolecules Vol. 33(2000), pp.8453-8459.

Google Scholar

[18] Xue Li, Yanchun Han, Lijia An: Applied Surface Science, Vol. 230(2004), pp.115-124.

Google Scholar

[19] Liang Fang, Ming Wei, Carol Barry, and Mead: Macromolecules, Vol. 43(2010), pp.9747-975.

Google Scholar