Generalized Block Triangular Preconditioner for Saddle Point Systems

Article Preview

Abstract:

In this paper, based on the preconditioner for saddle point systems in Benzi and Liu [M. Benzi, J. Liu, Block preconditioning for saddle point systems with indefinite (1,1) block, International Journal of Computer Mathematics, 84(8) (2007) 1117-1129], we present the generalized block preconditioner for generalized saddle point systems, which uses some more parameters and is a generalization of Benzi and Liu's block preconditioner. Moreover, spectral properties of our generalized block triangular preconditioner are given.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

614-617

Citation:

Online since:

September 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] K. A. Cliffe, T. J. Garratt and A. Spence, Eigenvalues of block matrices arising from problems in fluid mechanics, SIAM Journal on Matrix Analysis and Applications, 15 (1994) 1310-1318.

DOI: 10.1137/s0895479892233230

Google Scholar

[2] R. Glowinski, Finite element methods for incompressible viscous flow, Handbook of Numerical Analysis, VolumeIX, NumericalMethodsforFluids(Part3), 2003(Amsterdam: North-Holland).

DOI: 10.1016/s1570-8659(03)09003-3

Google Scholar

[3] P. Arbenz and R. Geus, Multilevel preconditioned iterative eigensolvers for Maxwell eigenvalue problems, Applied Numerical Mathematics, 54 (2005), 107-121.

DOI: 10.1016/j.apnum.2004.09.026

Google Scholar

[4] A. Gantner, R. H. W. Hoppe, D. K¨oster, K. Siebert and A. Wixforth, Numerical simulation of piezoelectrically agitated surface acoustic waves on microfluidic biochips, Computing and Visualization in Science, 10 (2007) 145-161.

DOI: 10.1007/s00791-006-0040-y

Google Scholar

[5] C. Greif, and D. Sch¨otzau, Preconditioners for the discretized time-harmonic Maxwell equations in mixed form, Numerical Linear Algebra with Applications, 14 (2007) 281-297.

DOI: 10.1002/nla.515

Google Scholar

[6] M. Benzi and J. Liu, Block preconditioning for saddle point systems with indefinite (1, 1) block, International Journal of Computer Mathematics, 84(8) (2007) 1117-1129.

DOI: 10.1080/00207160701356605

Google Scholar

[7] H. A. Van der Vorst, Iterative Krylov Methods for Large Linear Systems, Cambridge Monographs on Applied and Computational Mathematics, Cambridge University Press, Cambridge, UK, (2003).

Google Scholar

[8] M. Fortin and R. Glowinski, Augmented Lagrangian Methods: Application to the Numerical Solution of Boundary-Value Problems (Amsterdam: North-Holland), (1983).

DOI: 10.1016/s0168-2024(08)70029-8

Google Scholar

[9] M. Benzi, G. H. Golub and J. Liesen, Numerical solution of saddle point problems, Acta Numerica, 14 (2005) 1-137.

DOI: 10.1017/s0962492904000212

Google Scholar

[10] M. Benzi and V. Simoncini, On the eigenvalues of a class of saddle point matrices, Numerische Mathematik, 103 (2006) 173-196.

DOI: 10.1007/s00211-006-0679-9

Google Scholar

[11] M. BenziandM.A. Olshanskii, AnaugmentedLagrangian-basedapproachtotheOseen problem, SIAM Journal on Scientific Computing, 28 (2006) 2095-2113.

Google Scholar

[12] R. Fletcher, Practical Methods of Optimization, 2nd edn (Chichester: JohnWiley), (1987).

Google Scholar