[1]
K. A. Cliffe, T. J. Garratt and A. Spence, Eigenvalues of block matrices arising from problems in fluid mechanics, SIAM Journal on Matrix Analysis and Applications, 15 (1994) 1310-1318.
DOI: 10.1137/s0895479892233230
Google Scholar
[2]
R. Glowinski, Finite element methods for incompressible viscous flow, Handbook of Numerical Analysis, VolumeIX, NumericalMethodsforFluids(Part3), 2003(Amsterdam: North-Holland).
DOI: 10.1016/s1570-8659(03)09003-3
Google Scholar
[3]
P. Arbenz and R. Geus, Multilevel preconditioned iterative eigensolvers for Maxwell eigenvalue problems, Applied Numerical Mathematics, 54 (2005), 107-121.
DOI: 10.1016/j.apnum.2004.09.026
Google Scholar
[4]
A. Gantner, R. H. W. Hoppe, D. K¨oster, K. Siebert and A. Wixforth, Numerical simulation of piezoelectrically agitated surface acoustic waves on microfluidic biochips, Computing and Visualization in Science, 10 (2007) 145-161.
DOI: 10.1007/s00791-006-0040-y
Google Scholar
[5]
C. Greif, and D. Sch¨otzau, Preconditioners for the discretized time-harmonic Maxwell equations in mixed form, Numerical Linear Algebra with Applications, 14 (2007) 281-297.
DOI: 10.1002/nla.515
Google Scholar
[6]
M. Benzi and J. Liu, Block preconditioning for saddle point systems with indefinite (1, 1) block, International Journal of Computer Mathematics, 84(8) (2007) 1117-1129.
DOI: 10.1080/00207160701356605
Google Scholar
[7]
H. A. Van der Vorst, Iterative Krylov Methods for Large Linear Systems, Cambridge Monographs on Applied and Computational Mathematics, Cambridge University Press, Cambridge, UK, (2003).
Google Scholar
[8]
M. Fortin and R. Glowinski, Augmented Lagrangian Methods: Application to the Numerical Solution of Boundary-Value Problems (Amsterdam: North-Holland), (1983).
DOI: 10.1016/s0168-2024(08)70029-8
Google Scholar
[9]
M. Benzi, G. H. Golub and J. Liesen, Numerical solution of saddle point problems, Acta Numerica, 14 (2005) 1-137.
DOI: 10.1017/s0962492904000212
Google Scholar
[10]
M. Benzi and V. Simoncini, On the eigenvalues of a class of saddle point matrices, Numerische Mathematik, 103 (2006) 173-196.
DOI: 10.1007/s00211-006-0679-9
Google Scholar
[11]
M. BenziandM.A. Olshanskii, AnaugmentedLagrangian-basedapproachtotheOseen problem, SIAM Journal on Scientific Computing, 28 (2006) 2095-2113.
Google Scholar
[12]
R. Fletcher, Practical Methods of Optimization, 2nd edn (Chichester: JohnWiley), (1987).
Google Scholar