Room-Temperature Deposition of Silicon Thin Films by RF Magnetron Sputtering

Article Preview

Abstract:

Silicon thin film was successfully deposited on glass substrate using Radio frequency (RF) magnetron sputtering. The effect of deposition pressure on the physical and structural properties of thin films on the glass substrate was studied. The film thickness and deposition rate decreased with decreasing deposition pressure. Field emission scanning electron microscopy (FESEM) shows as the deposition pressure increased, the surface morphology transform from concise structured to not closely pack on the surface. Raman spectroscopy result showed that the peak was around 508 cm-1, showing that the thin film is nanocrystalline instead of polycrystalline silicon.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

543-547

Citation:

Online since:

October 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Mutsumi Kimura, Extraction of trap densities in entire bandgap of poly-Si thin-film transistors fabricated by solid-phase crystallization and dependence on process conditions of post annealing, Solid-State Electronic. s 63 (2011) 94–99.

DOI: 10.1016/j.sse.2011.05.002

Google Scholar

[2] Miin-Horng Juang, C.W. Chang, J.L. Wang, D.C. Shye, C.C. Hwang and S. -L. Jang, Formation of n-channel polycrystalline-Si thin-film transistors by dual source/drain implantation, Solid-State Electronics. 54 (2010) 516–519.

DOI: 10.1016/j.sse.2009.11.003

Google Scholar

[3] S. Gall, C. Becker, K.Y. Lee, T. Sontheimer and B. Rech, Growth of polycrystalline silicon on glass for thin-film solar cells, Journal of Crystal Growth. 312 (2010) 1277–1281.

DOI: 10.1016/j.jcrysgro.2009.12.065

Google Scholar

[4] Kin Kiong Lee and David N. Jamieson, Characterization of silicon polycrystalline solar cells at cryogenic temperatures with ion beam-induced charge, Solar Energy Material and Solar Cells. 94 (2010) 2405-2410.

DOI: 10.1016/j.solmat.2010.08.026

Google Scholar

[5] M. Matsumoto, Y. Inayoshi, M. Suemitsu, T. Yara, S. Nakajima, T. Uehara and Y. Toyoshima, Low temperature growth of polycrystalline Si on polyethylene terephtalate (PET) films using pulsed-plasma CVD under near atmospheric presuure, Thin Solid Films. 516 (2008).

DOI: 10.1016/j.tsf.2007.11.041

Google Scholar

[6] Evelyn Schmich, Norbert Schillinger and Stefan Reber, Silicon CVD deposition for low cost application in photovoltaics, Surf. Coat. Tech. 201(2007) 9325.

DOI: 10.1016/j.surfcoat.2007.04.089

Google Scholar

[7] S. Gall, C. Becker, E. Conrad, P. Dogan, F. Fenske, B. Gorka, K.Y. Lee, B. Rau, F. Ruske and B. Rech, Polycrystalline silicon thin-film solar cells on glass, Solar Energy Materials & Solar Cells. 93 (2009) 1004–1008.

DOI: 10.1016/j.solmat.2008.11.029

Google Scholar

[8] A. Illiberi, K. Sharma, M. Creatore and M.C.M. van de Sanden, Novel approach to thin film polycrystalline silicon on glass, Materials Letters. 63 (2009) 1817–1819.

DOI: 10.1016/j.matlet.2009.05.044

Google Scholar

[9] Chil-Chyuan Kuo, Dynamical resolidifaciton behavior of silicon thin films during frontside and backside excimer laser annealing, Optics and Lasers in Engineering. 49 (2011) 804–810.

DOI: 10.1016/j.optlaseng.2011.03.006

Google Scholar

[10] T.H. Teng, C.Y. Huang, T.K. Chang, C.W. Lin, L.J. Cheng, Y.L. Lu, H.C. Cheng, Degradation of passivated and non-passivated N-channel low-temperature polycrystalline silicon TFTs prepared by excimer laser processing, Solid-State Electronics. 46 (2002).

DOI: 10.1016/s0038-1101(02)00045-x

Google Scholar

[11] Do Young Kim, M. Gowtham, Myung Suk Shim and Junsin Yi, Polycrystalline silicon thin film made by metal-induced crystallization, Materials Science in Semiconductor Processing. 7 (2004) 433–437.

DOI: 10.1016/j.mssp.2004.09.118

Google Scholar

[12] Thanh Nga Nguyen, Van Duy Nguyen, Sungwook Jung and Junsin Yi, The metal-induced crystallization of poly-Si and the mobility enhancement of thin film transistors fabricated on glass substrate, Microelectronic Engineering. 87 (2010) 2163–2167.

DOI: 10.1016/j.mee.2010.01.019

Google Scholar

[13] Y. Leconte, P. Marie, X. Portier, M. Lejeune and R. Rizk, Pronounced crystallization of silicon layers deposited with high deposition rates at temperatures < 200oC, Thin Solid Films. 427 (2003) 252.

DOI: 10.1016/s0040-6090(02)01197-5

Google Scholar

[14] P. Reinig, V. Alex, F. Fenske, W. Fuhs and B. Selle, Pulsed dc magnetron sputtering of microctystalline silicon, Thin Solid Films. 86 (2002) 403-404.

DOI: 10.1016/s0040-6090(01)01552-8

Google Scholar

[15] Maoshui Lv, Xianwu Xiu, Zhiyong Pang, Ying Dai, Shenghao Han, Influence of the deposition pressure on the properties of transparent conducting zirconium-doped zinc oxide films prepared by RF magnetron sputtering, Applied Surface Science. 252 (2006).

DOI: 10.1016/j.apsusc.2005.07.042

Google Scholar

[16] K. Fukaya, A. Tabata, T. Mizutani, Dependence on gas pressure of mc-Si: H prepared by RF magnetron sputtering, Vacuum. 74 (2004) 561–565.

DOI: 10.1016/j.vacuum.2004.01.027

Google Scholar

[17] C.H. Tseng, W.H. Wang, H.C. Chang, C.P. Chou, C.Y. Hsu, Effects of sputtering pressure and Al buffer layer thickness on properties of AZO films grown by rf magnetron sputtering, Vacuum. 85 (2010) 263-267.

DOI: 10.1016/j.vacuum.2010.06.006

Google Scholar

[18] Kang TD, Lee H, Park SJ, Jang J and Lee S, Microcrystalline silicon thin films studied using spectroscopic ellipsometry, Journal of Applied Physics. 92 (2002) 2467.

DOI: 10.1063/1.1499980

Google Scholar