Residual Stresses and Deformations in Electron Beam Melting process Using Finite Element Analysis

Article Preview

Abstract:

The simulation of residual stress in Electron Beam Melting (EBM) process is critical for optimization of process conditions. However, there is no published literature on the simulation of residual stresses in this process. This paper considers finite element modeling of the temperature distribution through transient thermal analysis. The measured temperature and total heat flux from transient thermal analysis are then used as initial input parameters to the structural analysis. Consequently, deformations and residual stresses in structural analysis were measured. The titanium alloy, Ti6Al4V has been used, which is one of the most common materials for biomedical implants due to its high strength to weight ratio, corrosion resistance, and its biocompatibility features.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

789-792

Citation:

Online since:

October 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] O.L.A. Harrysson, O. Cansizoglu, D.J. Marcellin-Little, D.R. Cormier, H.A. West II, Direct metal fabrication of titanium implants with tailored materials and mechanical properties using electron beam melting technology, Mater. Sci. Eng., C. 28 (2008).

DOI: 10.1016/j.msec.2007.04.022

Google Scholar

[2] Information on http: /www. arcam. com.

Google Scholar

[3] J. Parthasarathy, B. Starly, S. Raman, A. Christensen, Mechanical evaluation of porous titanium (Ti6Al4V) structures with electron beam melting (EBM), J. Mech. Behav. Biomed. Mater. 3 (2010) 249-259.

DOI: 10.1016/j.jmbbm.2009.10.006

Google Scholar

[4] D.M. Robertson, L. Pierre, R. Chahal, Preliminary observations of bone ingrowth into porous materials, J. Biomed. Mater. Res. 10 (1976) 335-344.

DOI: 10.1002/jbm.820100304

Google Scholar

[5] G.E. Ryan, A.S. Pandit, D.P. Apatsidis, Porous titanium scaffolds fabricated using a rapid prototyping and powder metallurgy technique, Biomaterials. 27 (2008) 3625-3635.

DOI: 10.1016/j.biomaterials.2008.05.032

Google Scholar

[6] L.E. Murr, K.N. Amato, S.J. Li, Y.X. Tian, X.Y. Cheng, S.M. Gaytan, E. Martinez, P.W. Shindo, , F. Medina, R.B. Wicker, Microstructure and mechanical properties of open-cellular biomaterials prototypes for total knee replacement implants fabricated by electron beam melting, J. Mech. Behav. Biomed. Mater. 4 (2011).

DOI: 10.1016/j.jmbbm.2011.05.010

Google Scholar

[7] S. Biamino, A. Penna, U. Ackelid, S. Sabbadini, O. Tassa , P. Fino, M. Pavese, P. Gennaro, C. Badini, Electron beam melting of Ti-48Al-2Cr-2Nb alloy: Microstructure and mechanical properties investigation, Intermetallics. 19 (2011) 776-781.

DOI: 10.1016/j.intermet.2010.11.017

Google Scholar

[8] M.F. Zaeh, G. Branner, Investigations on residual stresses and deformations in selective laser melting, Prod. Eng. Res. Devel. 4 (2010) 35-45.

DOI: 10.1007/s11740-009-0192-y

Google Scholar

[9] A.M. Kamara, S. Marimuthu, L. Li, A numerical investigation into residual stress characteristics in laser deposited multiple layer waspaloy parts, J. Manuf. Sci. Eng. 133 (2011) 031013-1- 031013-9.

DOI: 10.1115/1.4003833

Google Scholar

[10] M. Svensson, U. Ackelid, Titanium alloys manufactured with electron beam melting mechanical and chemical properties, In proc. MPMD 2009 Minnesota, USA, 2009, 189-194.

Google Scholar

[11] E. Foroozmehr, F. Kong, R. Kovacevic, Effect of path planning on the laser powder deposition process: thermal and structural evaluation, Int. J. Adv. Manuf. Technol. 51 (2010) 659-669.

DOI: 10.1007/s00170-010-2659-6

Google Scholar