[1]
X.L. Wu, L.Y. Jiang, F.F. Cao, et al, LiFePO4 Nanoparticles Embedded in a Nanoporous Carbon Matrix: Superior Cathode Material for Electrochemical Energy-Storage Devices, Adv. Mater. 21 (2009) 2710-2714.
DOI: 10.1002/adma.200802998
Google Scholar
[2]
D.K. Kim, P. Muralidharan, H.W. Lee, et al, Spinel LiMn2O4 Nanorods as Lithium Ion Battery Cathodes, Nano. Lett. 8 (2008) 3948-3952.
DOI: 10.1021/nl8024328
Google Scholar
[3]
D.W. Chung, N. Balke, S.V. Kalinin, et al, Virtual Electrochemical Strain Microscopy of Polycrystalline LiCoO2 Films, J. Electrochem. Soc. 158 (2011) A1083-A1089.
DOI: 10.1149/1.3619775
Google Scholar
[4]
X.D. Li, W.S. Yang, D.G. Evans, et al, Synthesis of layered LiMnO2 by in situ oxidation intercalation and a study of the reaction mechanism and electrochemical performance, Chin. Sci. Bull. 50 (2005) 213-216.
DOI: 10.1007/bf02897529
Google Scholar
[5]
B.H. Deng, H. Nakamura, M. Yoshio, Capacity fading with oxygen loss for manganese spinels upon cycling at elevated temperatures, J. Power Sources 180 (2008) 864-868.
DOI: 10.1016/j.jpowsour.2008.02.071
Google Scholar
[6]
M.W. Raja, S. Mahanty, R.N. Basu, Influence of S and Ni co-doping on structure, band gap and electrochemical properties of lithium manganese oxide synthesized by soft chemical method, J. Power Sources 192 (2009) 618-626.
DOI: 10.1016/j.jpowsour.2009.03.040
Google Scholar
[7]
J.M. Chen, C.H. Hsu, Y.R. Li, et al, High-power LiFePO4 cathode materials with a continuous nano carbon network for lithium-ion batteries, J. Power Sources 184 (2008) 498-502.
DOI: 10.1016/j.jpowsour.2008.04.022
Google Scholar
[8]
J. Barker, R. Pynenburg, R. Koksbang, Determination of thermodynamic, kinetic and interfacial properties for the Li/ LixMn2O4 system by electrochemical techniques, J. Power Sources 52 (1994) 185-192.
DOI: 10.1016/0378-7753(94)01958-4
Google Scholar
[9]
S.Q. Liu, Y.Y. Lu, K.L. Huang, Preparation of LiMn2O4 by Sol-gel method and its properties, J. Inorg. Mat. 20 (2005) 1368-1372.
Google Scholar
[10]
X. Qiu, X. Sun, W. Shen, et al, Spinel Li1+xMn2O4 synthesized by coprecipitation as cathodes for lithium-ion batteries, Solid State Ionics 93 (1997) 335-339.
DOI: 10.1016/s0167-2738(96)00540-1
Google Scholar
[11]
K. Du, Y.N. Yang, G.R. Hu, et al, Synthesis conditions of LiMn2O4 prepared by Molten Salt method, Chin. J. Inorg. Chem. 24 (2008) 615-620.
Google Scholar
[12]
C.H. Jiang, S.X. Dou, H.K. Liu, et al, Synthesis of spinel LiMn2O4 nanoparticles through one-step hydrothermal reaction, J. Power Sources 172 (2007) 410-415.
DOI: 10.1016/j.jpowsour.2007.07.039
Google Scholar
[13]
T.M. Seung, T.C. Hoon, Preparation and characterization of LiMn2O4 powders by the emulsion dry method, J. Power Sources 84 (1999) 32-38.
Google Scholar
[14]
J.M. Guo, G.Y. Liu, X. Cui, et al, Effect of Fuel Content and Temperature on Spinel LiMn2O4 Prepared by Solid-State Combustion Synthesis, Rare Met. Mater. Eng. 38 (2009) 26-29.
Google Scholar
[15]
Y.L. Ruan, Z.Y. Tang, E.S. Han, et al, Synthesis and crystal structure of LiMn2O4 cathode material for Li-ion battery, Chin. J. Inorg. Chem. 21 (2005) 232-236.
Google Scholar
[16]
Y.X. Wen, K.W. Zhou, H.F. Su, et al, Kinetics of the decomposition of LiMn2O4 in air, J. Inorg. Mater. 20 (2005) 359-366.
Google Scholar
[17]
K. Miura, A. Yamada, M. Tanaka, Electric states of spinel LixMn2O4 as a cathode of the rechargeable battery, Electrochim. Acta. 41 (1996) 249-256.
DOI: 10.1016/0013-4686(95)00304-w
Google Scholar
[18]
H.M. Wu, J.P. Tu, Y.F. Yuan, et al, One step synthesis LiMn2O4 cathode by hydrothermal method, J. Power Sources 161 (2006) 1260-1263.
DOI: 10.1016/j.jpowsour.2006.05.011
Google Scholar