[1]
R.Z. Valiev, R.K. Islamgaliev, I.V. Alexandrov, Bulk nanostructured materials from severe plastic deformation, Prog. Mater Sci. 45 (2000) 103-189.
DOI: 10.1016/s0079-6425(99)00007-9
Google Scholar
[2]
G. Yang, C.X. Huang, C. Wang, Enhancement of mechanical properties of heat-resistant martensitic steel processed by equal channel angular pressing, Mater Sci. Eng. A 515 (2009) 199-206.
DOI: 10.1016/j.msea.2009.03.031
Google Scholar
[3]
G.H. Zahid, Y. Huang, and P.B. Prangnell, Microstructure and texture evolution during annealing a cryogenic-SPD processed Al-alloy with a nanoscale lamellar HAGB grain structure, Acta Mater. 57 (2009) 3509-3521.
DOI: 10.1016/j.actamat.2009.04.010
Google Scholar
[4]
A.P. Zhilyaev, D.L. Swisher, K. Oh-ishi, Microtexture and microstructure evolution during processing of pure aluminum by repetitive ECAP, Mater Sci. Eng. A 429 (2006) 137-148.
DOI: 10.1016/j.msea.2006.08.001
Google Scholar
[5]
H. Paul, A. MORAWIEC, E. BOUZY, Brass-type shear bands and their influence on texture formation, Metall. Mater. Trans. A 35 (2004) 3775-3786.
DOI: 10.1007/s11661-004-0283-5
Google Scholar
[6]
X. Huang, N. Hansen, N. Tsuji, Hardening by annealing and softening by deformation in nanostructured metals, Science 312 (2006) 249-251.
DOI: 10.1126/science.1124268
Google Scholar
[7]
X.Y. Zhang, Q. Liu, X.L. Wu, Work softening and annealing hardening of deformed nanocrystalline nickel, Appl. Phys. Lett. 93 (2008) 1-3.
DOI: 10.1063/1.3062849
Google Scholar
[8]
M. F. DENANOT, J. P. VILLAIN, The stacking fault energy in Cu‐Al‐Zn alloys, Phys. status solidi A 8 (1971) K125-K127.
DOI: 10.1002/pssa.2210080248
Google Scholar
[9]
N. Jia, X. Zhao, D. Song, On the anomalous hardening during annealing of heavily deformed f. c. c. metals, Mater. Sci. Eng. A 527 (2010) 1143-1150.
DOI: 10.1016/j.msea.2009.09.054
Google Scholar
[10]
Y.H. Zhao, Z. Horita, T.G. Langdon, Evolution of defect structures during cold rolling of ultrafine-grained Cu and Cu–Zn alloys: Influence of stacking fault energy, Mater. Sci. Eng. A 474 (2008) 342-347.
DOI: 10.1016/j.msea.2007.06.014
Google Scholar
[11]
H.P. Klug, L.E. Alexander, X-Ray Diffraction Procedures: For Polycrystalline and Amorphous Materials, Wiley-VCH, (1974).
Google Scholar
[12]
Y.H. Zhao, K. Zhang, K. Lu, Structure characteristics of nanocrystalline element selenium with different grain sizes, Phys. Rev. B 56 (1997) 322-329.
DOI: 10.1103/physrevb.56.14322
Google Scholar
[13]
Y.H. Zhao, H.W. Sheng, K. Lu, Microstructure evolution and thermal properties in nanocrystalline Fe during mechanical attrition, Acta Mater. 49 (2001) 365-375.
DOI: 10.1016/s1359-6454(00)00310-4
Google Scholar
[14]
R. Smallman, K. Westmacott, Stacking faults in face-centred cubic metals and alloys, Philos. Mag. 2 (1957) 669-683.
DOI: 10.1080/14786435708242709
Google Scholar
[15]
G. Williamson, R. Smallman, III. Dislocation densities in some annealed and cold-worked metals from measurements on the X-ray debye-scherrer spectrum, Philos. Mag. 1 (1956) 34-46.
DOI: 10.1080/14786435608238074
Google Scholar
[16]
Y.H. Zhao, X.Z. Liao, Z. Horita, Determining the optimal stacking fault energy for achieving high ductility in ultrafine-grained Cu–Zn alloys, Mater. Sci. Eng. A 493 (2008) 123-129.
DOI: 10.1016/j.msea.2007.11.074
Google Scholar
[17]
D. Terada, H. Houda, N. Tsuji, Effect of strain on hardening by annealing and softening by deformation, phenomena in ultra-fine grained aluminum, J. Mater. Sci. 43 (2008) 7331-7337.
DOI: 10.1007/s10853-008-2809-5
Google Scholar