The Effect of Annealing on Nanostructured Copper Alloys

Article Preview

Abstract:

Cu-12.1 at.% Al-4.1 at.% Zn alloys with stacking fault energy (SFE) of 7 mJ/m2 were rolled in liquid nitrogen. Further annealing treatment has been conducted to the cryorolled samples at different temperatures. Compared to cryorolled samples, it is found that the microhardness of the annealed ones has increased at the temperature of 200°C. The reason for the hardening phenomenon is briefly discussed in the paper.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 581-582)

Pages:

606-610

Citation:

Online since:

October 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] R.Z. Valiev, R.K. Islamgaliev, I.V. Alexandrov, Bulk nanostructured materials from severe plastic deformation, Prog. Mater Sci. 45 (2000) 103-189.

DOI: 10.1016/s0079-6425(99)00007-9

Google Scholar

[2] G. Yang, C.X. Huang, C. Wang, Enhancement of mechanical properties of heat-resistant martensitic steel processed by equal channel angular pressing, Mater Sci. Eng. A 515 (2009) 199-206.

DOI: 10.1016/j.msea.2009.03.031

Google Scholar

[3] G.H. Zahid, Y. Huang, and P.B. Prangnell, Microstructure and texture evolution during annealing a cryogenic-SPD processed Al-alloy with a nanoscale lamellar HAGB grain structure, Acta Mater. 57 (2009) 3509-3521.

DOI: 10.1016/j.actamat.2009.04.010

Google Scholar

[4] A.P. Zhilyaev, D.L. Swisher, K. Oh-ishi, Microtexture and microstructure evolution during processing of pure aluminum by repetitive ECAP, Mater Sci. Eng. A 429 (2006) 137-148.

DOI: 10.1016/j.msea.2006.08.001

Google Scholar

[5] H. Paul, A. MORAWIEC, E. BOUZY, Brass-type shear bands and their influence on texture formation, Metall. Mater. Trans. A 35 (2004) 3775-3786.

DOI: 10.1007/s11661-004-0283-5

Google Scholar

[6] X. Huang, N. Hansen, N. Tsuji, Hardening by annealing and softening by deformation in nanostructured metals, Science 312 (2006) 249-251.

DOI: 10.1126/science.1124268

Google Scholar

[7] X.Y. Zhang, Q. Liu, X.L. Wu, Work softening and annealing hardening of deformed nanocrystalline nickel, Appl. Phys. Lett. 93 (2008) 1-3.

DOI: 10.1063/1.3062849

Google Scholar

[8] M. F. DENANOT, J. P. VILLAIN, The stacking fault energy in Cu‐Al‐Zn alloys, Phys. status solidi A 8 (1971) K125-K127.

DOI: 10.1002/pssa.2210080248

Google Scholar

[9] N. Jia, X. Zhao, D. Song, On the anomalous hardening during annealing of heavily deformed f. c. c. metals, Mater. Sci. Eng. A 527 (2010) 1143-1150.

DOI: 10.1016/j.msea.2009.09.054

Google Scholar

[10] Y.H. Zhao, Z. Horita, T.G. Langdon, Evolution of defect structures during cold rolling of ultrafine-grained Cu and Cu–Zn alloys: Influence of stacking fault energy, Mater. Sci. Eng. A 474 (2008) 342-347.

DOI: 10.1016/j.msea.2007.06.014

Google Scholar

[11] H.P. Klug, L.E. Alexander, X-Ray Diffraction Procedures: For Polycrystalline and Amorphous Materials, Wiley-VCH, (1974).

Google Scholar

[12] Y.H. Zhao, K. Zhang, K. Lu, Structure characteristics of nanocrystalline element selenium with different grain sizes, Phys. Rev. B 56 (1997) 322-329.

DOI: 10.1103/physrevb.56.14322

Google Scholar

[13] Y.H. Zhao, H.W. Sheng, K. Lu, Microstructure evolution and thermal properties in nanocrystalline Fe during mechanical attrition, Acta Mater. 49 (2001) 365-375.

DOI: 10.1016/s1359-6454(00)00310-4

Google Scholar

[14] R. Smallman, K. Westmacott, Stacking faults in face-centred cubic metals and alloys, Philos. Mag. 2 (1957) 669-683.

DOI: 10.1080/14786435708242709

Google Scholar

[15] G. Williamson, R. Smallman, III. Dislocation densities in some annealed and cold-worked metals from measurements on the X-ray debye-scherrer spectrum, Philos. Mag. 1 (1956) 34-46.

DOI: 10.1080/14786435608238074

Google Scholar

[16] Y.H. Zhao, X.Z. Liao, Z. Horita, Determining the optimal stacking fault energy for achieving high ductility in ultrafine-grained Cu–Zn alloys, Mater. Sci. Eng. A 493 (2008) 123-129.

DOI: 10.1016/j.msea.2007.11.074

Google Scholar

[17] D. Terada, H. Houda, N. Tsuji, Effect of strain on hardening by annealing and softening by deformation, phenomena in ultra-fine grained aluminum, J. Mater. Sci. 43 (2008) 7331-7337.

DOI: 10.1007/s10853-008-2809-5

Google Scholar