Synthesis, Growth and Characterization of Organic Nonlinear Optical L-Asparagine L-Tartrate Single Crystals

Article Preview

Abstract:

L-asparagine L-tartrate (LAT), an organic compound has been synthesized from aqueous solution and bulk single crystal has been grown by slow evaporation technique. Powder X-ray diffraction studies confirmed the monoclinic structure of the grown LAT crystal. The presence of functional groups of the grown crystal was identified by FTIR studies. Linear optical property of the grown crystal was studied by UV-Vis spectral analysis. Microhardness studies reveal that the crystal possesses relatively higher hardness compared to other organic nonlinear optical crystals. Dielectric response of the L-asparagine L-tartrate crystal was analyzed for different frequencies at various temperatures. Kurtz-Perry powder second harmonic generation test confirmed the nonlinear optical properties of the as-grown LAT crystal.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

13-17

Citation:

Online since:

October 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] R.W. Munn, C.N. Ironside, "Principles and applications of nonlinear optical materials", Chapman and Hall, London, (1993)

Google Scholar

[2] J. Badan, R. Hierle, A. Perigand, J. Zyss, in: Williams (Ed.), "Nonlinear Optical Properties of Organic Molecules and Polymeric Materials", D.5. Am. Chem. Soc. Washington, DC, 233 (1993).

Google Scholar

[3] T. Kaino, B. Cai, K. Takayama, Advanced Functional Material, 12 (2002) 599–603.

Google Scholar

[4] F. Pan, G. Knopfle, C. Bosshard, S. Follonier, R. Spreiter, M.S. Wong, P. Gunter, Appl. Phys. Lett. 69 (1996) 13-15.

Google Scholar

[5] M. Thakur, J. Xu, A. Bhowmilk, L. Zhou, Appl. Phys. Lett. 74 (1999) 635–637.

Google Scholar

[6] W. Geis, R. Sinta, W. Mowers, S.J. Deneault, M.F. Marchant. K.E. Krohn, S.J. Spector, D.R. Calawa, T.M. Lyszczarz, Appl. Phys. Lett. 84 (2004) 3729-3731.

DOI: 10.1063/1.1723697

Google Scholar

[7] A. Schneider, M. Neis, M. Stillhart, B. Ruiz, R.U.A. Khan, P. Gunter, J. Opt. Soc. Am. B 23 (2006) 1822-1835.

Google Scholar

[8] D. Kalaiselvi, R. Mohankumar, R. Jayavel, Mater. Lett. 62 (2008) 755-758.

Google Scholar

[9] P. Srinivasan, T. Kanagasekaran, R. Gopalakrishnan, G. Bhagavannarayana, P. Ramasamy, Cryst. Growth Des. 6 (7) (2006) 1663-1670.

Google Scholar

[10] S. Natarajan, V. Hema, J. Kalyan Sundar, J. Suresh, P.L. Nilantha Lakshmanan, Acta Cryst. E66 (2010) o2239-2249.

Google Scholar

[11] B.W. Mott, "Microindentation Hardness Testing", Butterworths, London, (1956) 50-51.

Google Scholar

[12] E.M. Onitsch, Mikroskopie. 95 (1950) 12-17.

Google Scholar

[13] S.O. Pillai, "Solid State Physics", New Age International Limited, New Delhi, 618 (2001).

Google Scholar

[14] C. Miller, Appl. Phys. Lett. 5 (1964) 17-19.

Google Scholar

[15] S.K. Kurtz, T.T. Perry, J. Appl. Phys. 39 (1968) 3798-3813.

Google Scholar