Morphological and Luminescence Study on Eu3+ Doped ZnO Nanoparticle Prepared by Hydrothermal Method

Article Preview

Abstract:

Undoped and Eu3+doped ZnO nanostructure were successfully grown under hydrothermal method and europium doping concentration were varied as 1, 3 and 5 (at %). All the peaks in the XRD diffraction pattern are assigned to the typical hexagonal wurtzite structure of ZnO. Average crystallite size was calculated from scherrer formula and it indicated an increase in crystallite size with doping concentration. Scanning electron microscopy (SEM) for undoped and 1% doped samples shows spherical shape particles whereas for higher doping concentrations (3 and 5 at %), rod shaped particle are observed. The presence of Eu was confirmed by Energy dispersive X-ray analysis (EDX). Fourier transforms infrared spectroscopy (FT-IR) spectra are used to identify the strong metal oxide (Zn-O) interaction. Ultra violet visible (UV-vis) spectroscopy indicted an absorption peak at 375 nm. Red emission peak in photoluminescence (PL) spectra at 642 nm arises due to intra 4f-5d transition in Eu3+.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

129-133

Citation:

Online since:

November 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Z. Fan, J. G. Lu: Int. J, High speed electron. Syst. Vol.16 (2006), p.883

Google Scholar

[2] E. Galoppini, J. Rochford, H. Chen, G. Saraf, Y. Lu, A. Hagfeldt, G.Boschloo: J. Phys. Chem. Lett. B Vol. 110 (2006), 16159

DOI: 10.1021/jp062865q

Google Scholar

[3] R. Konenkamp, R. Word, C. Schlegel: Appl. Phys. Lett. Vol. 85 (2004), p.6004

Google Scholar

[4] R. N. Bhargava, D Gallagher, X. Hong, A. Numikko: Phys. Rev. Lett. Vol. 72 (1994), p.416

Google Scholar

[5] A. A. Bol, A. Meijerink: Phys. Rev. Vol.58 (1998), p.15997

Google Scholar

[6] Y. S Liu, Luo , R. F Li, X. Y Chen: Opt. Lett. Vol. 32 (2007), p.566

Google Scholar

[7] S. Y Gao, H. J Zhang, R. P Deng, Wang, D. H Sun, G. L Zheng: Appl. Phys. Lett. Vol. 89 (2006), p.123

Google Scholar

[8] M. Peres, A. Cruz, S. Pereira, M. R Correa, M. J Soares. A. Neves, CarnoMe. T. Monteiro, Pereira: Appl. Phys. A, Vol. 88 (2007), p.129

Google Scholar

[9] N. Rajeshwari Yogamalar, A. Chandra Bose: J. Alloys Compds. Vol. 509 (2011), p.8493

Google Scholar

[10] Esther Elizabeth, N. Rajeswari Yogamalar, R. Srinivasan, A. Chandra Bose: Adv. Mater. Res. Vol.67 (2009), p.245

Google Scholar

[11] N. Rajeshwari Yogamalar, A. Chandra Bose: J. Solid State Chem. Vol. 184 (2011), p.12

Google Scholar

[12] N. Rajeshwari Yogamalar, R. Srinivasan, A. Vinu, K. Ariga, A. Chandra Bose: Solid State Commun. Vol. 149 (2009), p.608

Google Scholar

[13] T. Wang, Y. Liu, Q. Fang, Y. Xu, G. Li, Z. Sun, M. Wu, J. Li, H. He: J. Alloy Comp. Vol. 509 (2011), p.9116

Google Scholar

[14] P. M. Sirimanne, T. Jeranko, P. Bogdanoff, S. Fiechter,H. Tributsch:  Semicond. Sci. Technol. Vol. 18 (2003), p.708

DOI: 10.1088/0268-1242/18/7/320

Google Scholar

[15] P. M. Aneesh, M. K. Jayaraj: Bull. Mater. Sci. Vol. 33 (2010) p.227

Google Scholar