Absorbance and Fluorescence Spectral Analysis of Sm3+ Ions Doped Bismuth Boro-Silicate Glasses

Article Preview

Abstract:

Glasses having compositions 20B2O3.(79.5-x)Bi2O3.xSiO2 (10 ≤ x ≤ 40) doped with 0.5 mol% of Sm 3+ ions were prepared by melt quench technique. The amorphous nature of the glasses was confirmed by X-ray diffraction studies. The spectroscopic properties of Sm 3+ ions in bismuth borosilicate glasses as a function of bismuth oxide were investigated using optical absorption and fluorescence spectra. The Judd-Ofelt theory has been employed to calculate transitions probability from the data of absorption cross-section of several f-f transitions. The intensity parameters Ω2 is related to the symmetry of glass hosts, where as the parameter Ω6 is inversely proportional to the rare earth oxygen (RE-O) covalency. The variation of Ω4 with Bi2O3 content has been attributed to rigidity of the samples. Using the Judd Ofelt intensity parameters the other radiative properties like radiative transition probability, radiative life time, branching ratio and the stimulated emission cross-sections of prepared BBSS glasses have been calculated. A bright fluorescent orange emission at 600 nm (4 G 5/26 H 7/2) of Sm 3+ ion has been investigated as a function of Bi2O3 in host glass. The radiative transition probabilities of Sm 3+ ions are large in bismuth borosilicate glasses, suggesting the suitability of these glasses as potential candidate for laser application.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

279-283

Citation:

Online since:

November 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A.A. Kamniskii, Laser crystals, second ed. Springer, Berlin. (1990) 252-253.

Google Scholar

[2] E. Pacoraro, J.A. Sampaio, L.A.O. Nunes, S. Gama, M.L. Baesso, Spectroscopic properties of Water free Nd2O3 Doped Low Silica Aluminosilcate Glass, Non-Cryst. Solids. 277 (2000) 73-81.

DOI: 10.1016/s0022-3093(00)00316-1

Google Scholar

[3] B. Viana, M. Palazzi, and O. LeFol, Optical characterization of Nd3+ doped sulphide glasses, Journal of Non-Crystalline Solids. 215 (1997) 96–102.

DOI: 10.1016/s0022-3093(97)00033-1

Google Scholar

[4] L. Boehm, R. Reisfeld, N. Sepctor, Optical transitions of Sm3+ in oxide glasses, Journal of Solid State Chemistry. 28 (1979) 75-79.

DOI: 10.1016/0022-4596(79)90060-4

Google Scholar

[5] B.T. Stone, K.L. Bray, Fluorescence properties of Er3+-doped sol-gel glasses, Journal of Non-Crystalline Solids. 197 (1996) 136-144.

DOI: 10.1016/0022-3093(95)00514-5

Google Scholar

[6] R. Reisfeld, C.K. Jorgensen, Lasers and Excited States of Rare Earths, Springer, Berlin, (1977).

Google Scholar

[7] Y.C. Ratnakaram, N.D. Thirpathi, R.P.S. Chakaradhar, Spectral studies of Sm3+ and Dy3+ doped lithium cesium mixed alkali borate glasses, Journal of Non-Crystalline Solids. 352 (2006) 3914-3922.

DOI: 10.1016/j.jnoncrysol.2006.06.008

Google Scholar

[8] H. Choi, A. Margaryan, F. G. Shi, Judd-Ofelt analysis of spectroscopic properties of Nd3+doped novel fluorophosphate glass, Journal of Luminescence. 114 (2005) 167–177.

DOI: 10.1016/j.jlumin.2004.12.015

Google Scholar

[9] I. Operea, H. Hesse, K. Betzler. Optical properties of bismuth borate glasses, Optical Materials 26(3) (2004) 235-237.

DOI: 10.1016/j.optmat.2003.10.006

Google Scholar

[10] P. Becker, Thermal and Optical Properties of Glasses of the System Bi2O3-B2O3 Cryst. Res. Technol. 1 (2003) 74-78.

DOI: 10.1002/crat.200310009

Google Scholar

[11] X. Zou, T. Izumitani Spectroscopic properties and mechanisms of excited state absorption and energy transfer upconversion for Er3+ doped glasses, J. Non-Cryst. Solids 162 (1) (1993) 68-80.

DOI: 10.1016/0022-3093(93)90742-g

Google Scholar

[12] S. Tanabe, T Ohayagi, N Soga, et al. Compositional dependence of Judd-Ofelt parameters of Er3+ ions in alkali metal borate glass. Phys. Rev. B46 (1992) 3305-3309.

DOI: 10.1103/physrevb.46.3305

Google Scholar

[13] B.R. Judd, Optical Absorption Intensities of Rare-Earth lons, Phy. Rev. 127 (1962) 750-761.

DOI: 10.1103/physrev.127.750

Google Scholar

[14] G.S. Ofelt, Intensities of Crystal Spectra of Rare-Earth Ions, Chem Phys. 37 (1962) 511-519.

Google Scholar

[15] W.F. Krupke, Induced-emission cross-section in neodymium laser glasses, IEEE J. Quantum electron QE-10 (1974) 450-457

DOI: 10.1109/jqe.1974.1068162

Google Scholar

[16] W.T. Carnall, P.R. Fdcids, K. Rajnax, Electronic energy levels in the trivalent lanthanide aquo ions, The journals of Chemical Physics. 49(10) (1968) 4424-4432.

DOI: 10.1063/1.1669894

Google Scholar

[17] A. Agarwal, I. Pal, S. Sanghi, M.P. Aggarwal, Judd-Ofelt Parameter and Radiative Properties of Sm3+ ions Doped Zinc Bismuth Borate Glasses, Opt. Mater. 32 (2009) 339-344.

DOI: 10.1016/j.optmat.2009.08.012

Google Scholar

[18] M.J. Weber, Fluorescence and glass laser, J. Non crystal. Solids. 47 (1982) 117-134.

Google Scholar

[19] S. Sanghi, I. Pal, A. Agarwal, M.P. Aggarwal, Effect of Bi2O3 on Spectroscopic and Structural Properties of Er3+ Doped Cadmium Bismuth Borate Glasses, Spectro. Chema Acta. 83 (2011) 94-99.

DOI: 10.1016/j.saa.2011.07.084

Google Scholar

[20] I Pal, A. Agarwal, S. Sanghi, M.P. Aggarwal, Structural Absorption and Flurescence Spectral Analysis of Pr3+ ions Doped Zinc Bismuth Borate Glasses, Alloys Compds. 509 (2011) 7625-7631.

DOI: 10.1016/j.jallcom.2011.04.114

Google Scholar