Nano-Size and Miscibility Gap

Article Preview

Abstract:

Reports on the alloys formed from immiscible atoms when they are contained in a nano-sized system have initiated several research activities in the recent years. Bridging of the miscibility gap at nanoscale is significant as it has the potential to produce novel alloy materials with useful technological applications. Although the literature contains noticeable number of reports on the formation of solid solution between bulk immiscible atoms, several issues related to phase stability and microstructure remain unaddressed. This article discusses some of these issues using examples from the work done by the author’s research group on isolated nanoparticles of bulk immiscible binary systems such as Ag-Ni, Ag-Fe and Ag-Co.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

8-13

Citation:

Online since:

November 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] V. H. Grassian, When size really matters: size-dependent properties and surface chemistry of metal and metal oxide nanoparticles in gas and liquid phase environment, J Phys Chem C 112(47) (2008) 18303-18313.

DOI: 10.1021/jp806073t

Google Scholar

[2] S. Xiong, W. Qi, Y. Cheng, B. Huang, M. Wang, Y. Li, Universal relation for size dependent thermodynamic properties of metallic nanoparticles, Phys Chem Chem Phys 13 (2011) 10652-10660.

DOI: 10.1039/c0cp90161j

Google Scholar

[3] O. V. Salata, Application of nanoparticles in biology and medicine, J nanobiotechnology 2 (2004) 3-9.

Google Scholar

[4] H. S. Shin, J. Yu, Size-dependent lattice parameters of microstructure-controlled Sn nanowires, J Mater Res 26(16) (2011) 2033-2039.

DOI: 10.1557/jmr.2011.218

Google Scholar

[5] C. Srivastava, S. Chithra, K. D. Malviya, S. K. Sinha, K. Chattopadhyay, Size dependent microstructure for Ag-Ni nanoparticles, Acta Mater 59 (2011) 6501-6509.

DOI: 10.1016/j.actamat.2011.07.022

Google Scholar

[6] Faraday Discuss 138 (2008) 119-135.

Google Scholar

[7] Schamp C T, and Jesser W A. Metallurgical and Materials Transaction A 2006; 37A: 1825-1829.

Google Scholar

[8] H. Yasuda, H. Mori, Phase diagrams in nanometer-sized alloy systems, J Cryst Growth 237 (2002) 234-238.

DOI: 10.1016/s0022-0248(01)01881-4

Google Scholar

[9] H. Yasuda, H. Mori, Spontaneous alloying of zinc atoms into gold clusters and formation of compound clusters, Phys Rev Lett 69 (1992) 3747-3750.

DOI: 10.1103/physrevlett.69.3747

Google Scholar

[10] Z. Peng, H. Yang, Ag–Pt alloy nanoparticles with the compositions in the miscibility gap, J Solid State Chem 181 (2008) 1546-1551.

DOI: 10.1016/j.jssc.2008.03.013

Google Scholar

[11] D Mott, J Luo, A Smith, P N Njoki, L Wang, C J Zhong, Nanocrystal and surface alloy properties of bimetallic Gold-Platinum nanoparticles, Nanoscale Res Lett 2 (2006) 12-16.

DOI: 10.1007/s11671-006-9022-8

Google Scholar

[12] R. E. Reed-Hill, Physical Metallurgy Principles, Litton Educational Publishing, Inc, New York, 1973.

Google Scholar

[13] D. A. Porter, K. E. Easterling, M. Y. Sherif, Phase Transformation in Metal and Alloys, third ed., CRC Press, Boca Raton 2009.

Google Scholar

[14] Q. Jiang, D. S. Jhao, M. Zhao, Size-dependent interface energy and related interface stress, Acta Mater 49 (2001) 3143-3147.

DOI: 10.1016/s1359-6454(01)00232-4

Google Scholar

[15] J. Weissmuller, P. Bunzel, G. Wilde, Two phase equilibrium in small alloy particles, Scripta Mater 51 (2004) 813-818.

DOI: 10.1016/j.scriptamat.2004.06.025

Google Scholar

[16] H. M. Lu, Q. Jiang, Size-dependent surface energy of nanocrystals, J Phys Chem B 108 (2004) 5617-5619.

Google Scholar

[17] S. Xiong , W. Qi , Y. Cheng , B. Huang , M. Wang, Yejun Li, Modeling size effects on the surface free energy of metallic nanoparticles and nanocavities, Phys Chem Chem Phys 13 (2011) 10648-10651.

DOI: 10.1039/c0cp02102d

Google Scholar

[18] M. Singleton, P. Nash, The Ag-Ni (Siler-Nickel) system, J Phase Equilib 8(2) (1987) 119-121.

Google Scholar

[19] C. Srivastava, S. K. Sinha, Ultra fine scale microstructure for Ag-Fe nanoparticles, Chem Phys Lett 514 (2011) 307-310.

DOI: 10.1016/j.cplett.2011.08.052

Google Scholar

[20] L. J. Swartzendruber, The Ag-Fe (Silver-Iron) system, J Phase Equilib 5(6) (1984) 560-564.

Google Scholar

[21] S. A. Nepijko, E. Pippel, J. Woltersdorf, Dependence of lattice parameter on particle size, Phys Status Solidi (A) 61(2) (2006) 469-475.

DOI: 10.1002/pssa.2210610218

Google Scholar

[22] K. T. Jacob, S. Raj, L. Rannesh, Vegard's law: a fundamental relation or an approximation?, Int J Mater Res 9 (2007) 776-779.

DOI: 10.3139/146.101545

Google Scholar

[23] W. A. Jesser, C. T. Schamp, Nanoparticle semiconductor compositions in the miscibility gap, Phys Stat Sol 5(2) (2008) 539-544.

DOI: 10.1002/pssc.200776825

Google Scholar

[24] J. H. He, H. W. Sheng, E. Ma. The enthalpy state of amorphous alloys in an immiscible system. Appl Phys Lett 78(10) (2001) 1343-45.

DOI: 10.1063/1.1352040

Google Scholar

[25] W. J. Huang, R. Sun, J. Tao, L. D. Menard, R. G. Nuzzo, J. M. Zuo, Coordination-dependent surface atomic contraction in nanocrystals revealed by coherent diffraction, Nat Mater 7 (2008) 308-313.

DOI: 10.1038/nmat2132

Google Scholar

[26] C. Srivastava, B. M. Mundotiya, Morphology dependence of Ag-Ni solid solubility, Electrochem Solid ST 15(2) (2012) K10-K15.

DOI: 10.1149/2.003202esl

Google Scholar

[27] C. Srivastava, Phase separation by nanoparticle splitting, Mater Lett 70 (2012) 122-124.

Google Scholar

[28] I. Karakaya, W. T. Thompson, The Ag-Co (Silver-Cobalt) system, J Phase Equilib 7(3) (1986) 259-263.

Google Scholar

[29] E. Ma, Alloys created between immiscible elements, Prog Mater Sci 50(4) (2005) 413-509.

Google Scholar

[30] S. Nag, K. C. Mahdak, A. Devaraj, S. Gohil, P. Ayyub, R. Banerjee, Phase separation in immiscible silver-copper alloy thin films, J Materials Science 44(13) (2009) 3393-3401.

DOI: 10.1007/s10853-009-3449-0

Google Scholar