Deformation and Energy Absorption of Aluminum Foam Filled Square Tubes

Article Preview

Abstract:

Modeling and numerical simulation of aluminum foam filled square tubes under axial impact loading is presented. The foam-filled thin-walled square tubes are modeled as shell wherein, foam core is modeled by incorporating visco-elastic plastic foam model in Altair® RADIOSS. Deformation and energy absorption studies with single, bi-tubular, and multi-tube structure with and without aluminum foam core are carried out for assessing its effectiveness in crashworthiness under the identical conditions. It is observed that the multi-tube structure with foam core modify the deformation modes considerably and results in substantial increase in energy absorption capacity in comparison with the single and multi-tube without foam core. Moreover, the multi-tube foam filled structure shows complicated deformation modes due to the significant effect of stress wave propagation. This study will help automotive industry to design superior crashworthy components with multi-tube foam filled structures and will reduce the experimental trials by conducting the numerical simulations.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

34-38

Citation:

Online since:

November 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A. A. A. Alghamdi, Collapsible impact energy absorbers: an overview, Th-Wall. Str. 39 (2001) 189-213.

Google Scholar

[2] N. Jones, Structural Impact, Cambridge University Press, Cambridge U. K., 1989.

Google Scholar

[3] M. Langseth, O. S. Hopperstad, Static and dynamic axial crushing of square thin walled aluminium extrusions, Int. J. Imp. Eng. 18(7-8) (1996) 949-968.

DOI: 10.1016/s0734-743x(96)00025-5

Google Scholar

[4] M. Langseth, O. S. Hopperstad, T. Berstad, Crashworthiness of aluminium extrusions: validation of numerical simulation, effect of mass ratio and impact velocity, Int. J. Imp. Eng. 22(1999) 829-854.

DOI: 10.1016/s0734-743x(98)00070-0

Google Scholar

[5] T. Wierzbicki, W. Abramowicz, On the crushing mechanics of thin-walled structures, J. App. Mech. 50(4) (1983) 727-734.

DOI: 10.1115/1.3167137

Google Scholar

[6] W. Abramowicz, N. Jones, Dynamic axial crushing of square tubes, Int. J. Imp. Eng. 2(2) (1984) 179-208.

Google Scholar

[7] W. Abramowicz, T. Wierzbicki, Axial crushing of multicorner sheet metal columns, J. App. Mech. 56(1) (1989) 113-120.

DOI: 10.1115/1.3176030

Google Scholar

[8] M. Seitzberger, F.G. Rammerstoffer, H.P. Degischer, R. Gradinger, Crushing of axially compressed steel tubes filled with aluminium foam, Acta Mech. 125 (1997) 93-105.

DOI: 10.1007/bf01177301

Google Scholar

[9] J. Banhart, MetallschaÈume, Proceedings of Symposium MetallschaÈume. 6-7 March, 1997, Bremen, Verlag MIT, Bremen, Germany.

Google Scholar

[10] D. P. Mondal, M. D. Goel, S. Das, Effect of strain rate and relative density on compressive deformation behaviour of closed cell aluminium-fly ash composite foam, Mat. Des. 30(2009) 1268-1274.

DOI: 10.1016/j.matdes.2008.06.059

Google Scholar

[11] D. P. Mondal, M. D. Goel, S. Das, Compressive deformation and energy absorption characteristics of closed cell aluminium-fly ash particle composite foam, Mat. Sci. Eng. A, 507(1-2) (2009) 102-109.

DOI: 10.1016/j.msea.2009.01.019

Google Scholar

[12] Theory Manual, Altair(R) RADIOSS(TM) Version 10.0., 2009.

Google Scholar

[13] A. A. N. Aljawi, M. Abd-Rabou, S. Asiri, Finite element and experimental analysis of square tubes under dynamic axial crushing, European Congress on Computational Methods in Applied Sciences and Engineering ECCOMAS 2004 P. Neittaanmäki, T. Rossi, K. Majava, and O. Pironneau (Eds.) R. Owen and M. Mikkola (Assoc. Eds.), Jyväskylä, 24-8 July 2004.

Google Scholar