[1]
Lu Qiang, Sun Yuan-zhang. Nonlinear control of electric power systems [M]. Beijing: Science Press, (1993).
Google Scholar
[2]
Y. Kuroe and S. Hayashi, Analysis of bifurcation in power electronic induction motor drive system. Conf. Rec. 1989 IEEE Power Electronics Specialists Conf., pp.923-930, (1989).
DOI: 10.1109/pesc.1989.48578
Google Scholar
[3]
Ott, E, Grebogi, C and Yorke, J. Controlling chaos [J]. Physical Review Letters, 1990, 64(11): 1196-1199.
DOI: 10.1103/physrevlett.64.1196
Google Scholar
[4]
H. D, Chiang, P. P, Varaiya and Mark, G.L. Chaos in power system [J]. IEEE Transactions on Power System, 1993, 8(4): 1407-1414.
Google Scholar
[5]
Jing Zhu-jun. Complex dynamics in a permanent-magnet synchronous motor model [J]. Chaos Solitons & Fractals, vol. 22, pp.831-848, Nov (2004).
DOI: 10.1016/j.chaos.2004.02.054
Google Scholar
[7]
Deepak, K. L. and Swark, K. S. Modeling and simulation of chaotic phenomena in electrical power systems [J]. Applied Soft Computing, 2011, 11(1): 103-110.
DOI: 10.1016/j.asoc.2009.11.001
Google Scholar
[8]
MA Guo-jin, QI Dong-lian. Tracking control of chaotic dynamical systems by state observer [J]. Journal of circuits and systems, 2009, 14(2): 27-31.
Google Scholar
[9]
Fang Reng-cun, Zhou Jian-zhong, PENG Bing, AN Xue-li. Cha- otic Dynamics of Power Load and Its Short-Term Forecasting[J]. Power System Technology, 2008, 32(4) : 61-66.
Google Scholar
[10]
Wu Zhong-qiang, Li Jie. Synchronization of chaotic system based on finite-time observer[J]. Control Engineering of China, 2010, 17(1) : 28-34.
Google Scholar
[11]
Wu Zhong-qiang, Yao Yuan, Dou Chun-xia. Fuzzy adaptive control for multi-machine power system[J]. Power System Protection and Control , 2011, 39(10) : 5-26.
Google Scholar
[12]
Dong Shi-yong, Bao Hai, Wei Zhe. Calculations and simulations of the chaotic oscillation threshold in dual-unit Systems[J]. Proceedings of the CSEE, 2010, 30(19) : 58-63.
Google Scholar