Research on the Elastic Modulus of Single-Walled Carbon Nanotubes

Article Preview

Abstract:

The calculation of elastic modulus of carbon nanotubes is an essential prerequisite for future Micro-nano devices fabrication that based on carbon nanotubes. The interaction potential of C-C covalent bond in single-walled carbon nanotubes (SWCNTs) is described by Terrsoff-Brenner potential in this paper. The elastic modulus of SWCNTs is ranged from 1.1078TPa to 1.23789TPa with the diameter increases from 0.3176nm to 2.0626nm by molecular dynamics (MD) simulation. The critical diameters of armchair and zigzag nanotubes are 1nm and 0.6nm.The elastic modulus changes with the diameter of nanotubes increasing clearly when the diameter smaller than the critical diameter, but the value of elastic modules tends to convergence when the diameter of nanotubes larger than the critical diameter.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 591-593)

Pages:

935-939

Citation:

Online since:

November 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S. Iijima: Nature, Vol. 354 (1991), p.56.

Google Scholar

[2] Y. Jin and F.G. Yuan: Composites Science and Technology, Vol. 63 (2003), p.1570.

Google Scholar

[3] Y. Wang, X.X. Wang, X.G. Ni and H.A. Wu: Computational Materials Science, Vol. 32 (2005), p.141.

Google Scholar

[4] M.M. Shokrieh and R. Rafiee: Materials and Design, Vol. 31 (2010), p.790.

Google Scholar

[5] A. Pantano, D.M. Parks and M.C. Boyce: Journal of the Mechanics and Physics of Solids, Vol. 52 (2004), p.789.

Google Scholar

[6] P. Zhang, Y. Huang, P.H. Geubelle, P.A. Klein and K.C. Hwang: International Journal of Solids and Structures, Vol. 39 (2002), p.3893.

Google Scholar

[7] D.W. Brenner: Physical Review B, Vol. 42 (1990), p.9458.

Google Scholar

[8] T. Natsuki, K. Tantrakarn and M. Endo: Carbon, Vol. 42 (2004), p.39.

Google Scholar

[9] Y.D. Wu, X.C. Zhang, A.Y.T. Leung and W.F. Zhong: Thin-Walled Structures, Vol. 44 (2006), p.667.

Google Scholar

[10] S.C. Fang, W.J. Chang and Y.H. Wang: Physics Letters A, Vol. 371 (2007), p.499.

Google Scholar

[11] T. Natsuki, K. Tantrakarn and M. Endo: Appl. Phys. A, Vol. 79 (2004), p.117.

Google Scholar

[12] M. Meo and M. Rossi: Composites Science and Technology, Vol. 66 (2006), p.1597.

Google Scholar

[13] Y. Wu, M.Y. Huang, F. WANG, X.M. Henry Huang, S. Rosenblatt, L. Huang, H. Yan, S.P. O'Brien, J. Hone and F. Heinz: Nano Letters, Vol. 8 (2008) No. 12, p.4158.

DOI: 10.1021/nl801563q

Google Scholar

[14] K.M. Liew, X.Q. He and C.H. Wong: Acta Materialia, Vol. 52 (2004), p.2521.

Google Scholar

[15] J. Terrsoff: Physical Review B, Vol. 39 (1989) No. 8, P. 5566.

Google Scholar

[16] A. Krishnan, E. Dujardin, T.W. Ebbesen, P.N. Yianilos and M.M.J. Treacy: Physical Review B, Vol. 58 (1998) No. 20, p.14013.

DOI: 10.1103/physrevb.58.14013

Google Scholar