[1]
Moses, F., Schilling, C.G., and Raju, K.S.. Fatigue evaluation procedures for steel bridges. National Cooperative Highway Research Program (NCHRP) Rep. No. 299, Transportation Research Board, Washington, D.C. (1987).
Google Scholar
[2]
Li, W. and Cheung, M.M.S.. Probabilistic fatigue and fracture analysis of steel bridges. J Struct Saf, 23:245-62.(2003).
Google Scholar
[3]
Crooker, T.W., Krause, D.J.. The influence of stress ratio and stress level on fatigue crack growth rates in 140 ksi YS steel. Report of NRL Progress. Naval Research Laboratory, Washington, DC, pp.33-35.(1972).
Google Scholar
[4]
Kumar, R., Pandey, A.K.. Investigation of fatigue crack growth under constant amplitude loading. International Journal of Pressure Vessels and Piping 41(2), 179-192.(1990).
DOI: 10.1016/0308-0161(90)90040-o
Google Scholar
[5]
Kujawski, D.. A fatigue crack driving force parameter with load ratio effects. International Journal of Fatigue 23, 239-246. (2001)
DOI: 10.1016/s0142-1123(01)00158-x
Google Scholar
[6]
Dowling N.E.. Mechanical behavior of materials: engineering methods for deformation fracture and fatigue. 2nd ed. Upper Saddle River (NJ): Prentice Hall.(1999).
Google Scholar
[7]
Zhao, T., Jiang, Y.. Fatigue of 7075-T651 aluminum alloy. International Journal of Fatigue 30, 834-849.(2008).
DOI: 10.1016/j.ijfatigue.2007.07.005
Google Scholar
[8]
Zhifang Liu, Zhongyong Xu, Lixiong Gu. A novel mechanics model for fatigue crack growth under constant amplitude loading. Proceedings of the Eleventh International Symposium on Structural Engineering, v 1(2010), pp.886-890.(In Chinese)
Google Scholar
[9]
Lixiong Gu, Zhifang Liu, Zhongyong Xu. Threshold stress intensity factor () in inertial effect coefficient model. Advanced Materials Research, New and Advanced Materials, v 197-198(2011), pp.1452-1459.(In Chinese)
DOI: 10.4028/www.scientific.net/amr.197-198.1452
Google Scholar
[10]
Lixiong Gu, Zhifang Liu, Zhongyong Xu. A key parameter in a novel fatigue crack growth model. Advanced Materials Research, Advances in Structures, v 163-167 (2011), pp.3186-3192.(In Chinese)
DOI: 10.4028/www.scientific.net/amr.163-167.3186
Google Scholar
[11]
Lixiong Gu, Zhifang Liu, Zhongyong Xu. Analysis of the parameter C in inertial effect coefficient model. Advanced Materials Research, Advances in Civil Engineering and Architecture, v 243-249(2011), pp.5458-5464.(In Chinese)
DOI: 10.4028/www.scientific.net/amr.243-249.5458
Google Scholar
[12]
Paris, P.C., Erdogan, F.. A critical analysis of crack propagation laws. ASME Journal of Basic Engineering D85, 528-534.(1963).
DOI: 10.1115/1.3656902
Google Scholar
[13]
Aliaga D, Davy A, Schaff H.. A simple crack closure model for predicting fatigue crack growth under flight simulation loading. In: Newman JC, Elber W, editors. Mechanics of fatigue crack closure, ASTM STP 982. Philadelphia: American Society for Testing and Materials, pp.491-504. (1988).
DOI: 10.1520/stp27227s
Google Scholar
[14]
Donald K, Paris P.C.. An evaluation of estimation procedure on 6061-T6 and 2024-T3 aluminium alloys. In J Fatigue, 21:S47-S57. (1999).
DOI: 10.1016/s0142-1123(99)00055-9
Google Scholar
[15]
Zhang, M.. The test methods analysis of threshold stress intensity factor of fatigue crack growth. Transaction of Nan Jing Aeronautics college,10:301-306.(1992).(In Chinese)
Google Scholar