[1]
F. Naeim and J. M. Kelly, Design of Seismic Isolated Structures, John Wiley, New York, 1999.
Google Scholar
[2]
K. L. Ryan and A .K. Chopra, Estimation of seismic demands on isolators based on nonlinear analysis, J. Struct. Eng., ASCE, 2004, 130, pp.392-402.
DOI: 10.1061/(asce)0733-9445(2004)130:3(392)
Google Scholar
[3]
S. Sorace, G. Terenzi, Iterative design procedure of fluid viscous devices included in braced frames, Proceedings of Eurodyn'99, 4th European Conference on Structural Dynamics, Praga, 1999.
Google Scholar
[4]
A. Chiarugi, S. Sorace, G. Terenzi, Application of a design method for FV dampers in base-isolation systems, PRIN 1997, Proceedings of Final Workshop "Protezione sismica dell'edilizia esistente e di nuova edificazione attraverso sistemi innovativi", Napoli, 12 -13 maggio 2000.
Google Scholar
[5]
S. Sorace, G. Terenzi, Non-linear dynamic modelling and design procedure of FV spring-dampers for base isolation, Engineering Structures, Elsevier Science Ltd, Oxford, Vol. 23, N.12, pp.1556-1567, 2001.
DOI: 10.1016/s0141-0296(01)00063-3
Google Scholar
[6]
S. Sorace, G. Terenzi, Analysis and demonstrative application of a base isolation/ supplemental damping technology, Earthquake Spectra, EERI, Oakland, Vol.24, N.3, pp.775-793, 2008.
DOI: 10.1193/1.2946441
Google Scholar
[7]
S. Sorace, G. Terenzi, G. Magonette, F.J. Molina, Experimental investigation on a base isolation system incorporating steel-Teflon sliders and pressurized fluid viscous spring-dampers, Earthquake Engineering & Structural Dynamics, Wiley & Sons, Ltd, New York, Vol.37, N.2, pp.225-242, 2008.
DOI: 10.1002/eqe.753
Google Scholar
[8]
A.S. Mokha, M.C. Constantinou and A.M. Reinhorn, Teflon bearing in base isolation. I: testing, J. Struct. Engrg. ASCE 116, 1990.
DOI: 10.1061/(asce)0733-9445(1990)116:2(438)
Google Scholar
[9]
E.L. Wilson, Three-Dimensional Static and Dynamic Analysis of Structures, A Physical Approach with Emphasis on Earthquake Engineering, Computers and Structures, Inc., 2003.
Google Scholar
[10]
EC8, Eurocode 8: Design of Structures for Earthquake Resistance - Part 1: General rules, seismic actions and rules for buildings, PrEN1998-1, European Committee for Standardization, TC250/SC8, 2003.
DOI: 10.3403/03244372u
Google Scholar
[11]
E.L. Wilson, Three dimensional static and dynamic analysis of structures, Third Edition, Computers and Structures Inc., Berkeley, CA, 2002.
Google Scholar
[12]
Cancellara, D., Pasquino, M., Performance Based Design according to EC8: Fixed-Base vs. Base-Isolated RC frame structures, Ingegneria sismica, Vol.26, n.2, pp.50-61, 2009.
Google Scholar
[13]
ESD,EuropeanStrong-motion Database, http://www.isesd.cv.ic.ac.uk/ESD/frameset.htm
Google Scholar
[14]
EC2, Eurocode 2: Design of concrete structures, UNI EN 1992-1-1, European Committee for Standardization, CEN/TC 250, 2004.
Google Scholar
[15]
Cancellara, D., De Angelis, F., Pasquino, V., Displacement based approach for the seismic retrofitting of a RC existing building designed for only gravitational loads, Applied Mechanics and Materials, Vol. 166-169, pp.1718-1729, 2012.
DOI: 10.4028/www.scientific.net/amm.166-169.1718
Google Scholar
[16]
B. Gutenberg, S.F. Richter, Seismicity of the Earth and Associated Phenomena, 2nd Edition, Princeton University Press, pp.17-19, 1954.
Google Scholar
[17]
De Angelis, F., An internal variable variational formulation of viscoplasticity, Computer Methods in Applied Mechanics and Engineering, Vol. 190, n. 1-2, pp.35-54, 2000.
DOI: 10.1016/s0045-7825(99)00306-0
Google Scholar
[18]
De Angelis, F., A variationally consistent formulation of nonlocal plasticity, Int. Journal for Multiscale Computational Engineering, Vol. 5, n. 2, pp.105-116, 2007.
DOI: 10.1615/intjmultcompeng.v5.i2.40
Google Scholar
[19]
De Angelis, F., Multifield potentials and derivation of extremum principles in rate plasticity, Materials Science Forum, Vol. 539-543, pp.2625-2630, 2007.
DOI: 10.4028/www.scientific.net/msf.539-543.2625
Google Scholar
[20]
De Angelis, F., Evolutive laws and constitutive relations in nonlocal viscoplasticity, Applied Mechanics and Materials, Vol. 152-154, pp.990-996, 2012.
DOI: 10.4028/www.scientific.net/amm.152-154.990
Google Scholar
[21]
De Angelis, F., A comparative analysis of linear and nonlinear kinematic hardening rules in computational elastoplasticity, Technische Mechanik, Vol. 32, n. 2-5, pp.164-173, 2012.
Google Scholar
[22]
Alfano, G., De Angelis, F., Rosati, L., General solution procedures in elasto/ viscoplasticity, Computer Methods in Applied Mechanics and Engineering, Vol. 190, pp.5123-5147, 2001.
DOI: 10.1016/s0045-7825(00)00370-4
Google Scholar
[23]
De Angelis, F., Cancellara, D., Modano, M., Pasquino, M., The consequence of different loading rates in elasto/viscoplasticity, Procedia Engineering, Vol. 10, pp.2911-2916, 2011.
DOI: 10.1016/j.proeng.2011.04.483
Google Scholar
[24]
De Angelis, F., Cancellara, D., Implications due to different loading programs in inelastic materials, Advanced Material Research, Vol. 422, pp.726-733, 2012.
DOI: 10.4028/www.scientific.net/amr.422.726
Google Scholar
[25]
De Angelis, F., Cancellara, D., Results of distinct modes of loading procedures in the nonlinear inelastic behavior of solids, Advanced Material Research, Vol. 482-484, pp.1004-1011, 2012.
DOI: 10.4028/www.scientific.net/amr.482-484.1004
Google Scholar
[26]
CSI, SAP2000NL – Structural Analysis Programs, Theoretical and Users Manual, Version 10.1, Computers and Structures Inc., Berkeley, CA, 2005.
Google Scholar