[1]
F. Naeim and J. M. Kelly, Design of Seismic Isolated Structures, John Wiley, New York, (1999).
Google Scholar
[2]
K. L. Ryan and A .K. Chopra, Estimation of seismic demands on isolators based on nonlinear analysis, J. Struct. Eng., ASCE, 130, pp.392-402, (2004).
DOI: 10.1061/(asce)0733-9445(2004)130:3(392)
Google Scholar
[3]
C. Christopoulos, A. Filiatrault, Principles of Passive Supplemental Damping and Seismic Isolation, IUSS Press, Pavia, Italy, (2006).
DOI: 10.1061/(asce)0733-9445(2007)133:8(1192)
Google Scholar
[4]
Y.J. Park, Y.K. Wen and A. H-S. Ang, Random Vibration of Hysteretic Systems under Bi-Directional Ground Motions, Earthquake Engineering and Structural Dynamics, Vol. 14, (1986).
DOI: 10.1002/eqe.4290140405
Google Scholar
[5]
S. Nagarajaiah, A. M. Reinhorn and M. C. Constantinou, 3D-Basis: Nonlinear Dynamic Analysis of Three-Dimensional Base Isolated Structures: Part II, Technical Report NCEER-91-0005, Nation Center For Earthquake Engineering Research, Buffalo, N.Y., (1991).
Google Scholar
[6]
E.L. Wilson, Three-Dimensional Static and Dynamic Analysis of Structures, A Physical Approach With Emphasis on Earthquake Engineering, Computers and Structures, Inc., (2003).
Google Scholar
[7]
Y.K. Wen, Method for Random Vibration of Hysteretic Systems, Journal of the Engineering Mechanics Division, ASCE, Vol.102 (2), pp.249-263, (1976).
DOI: 10.1061/jmcea3.0002106
Google Scholar
[8]
A.S. Mokha, M.C. Constantinou and A.M. Reinhorn, Teflon bearing in base isolation. I: testing, J. Struct. Engrg. ASCE, Vol. 116 (2), pp.438-454, (1990).
DOI: 10.1061/(asce)0733-9445(1990)116:2(438)
Google Scholar
[9]
A.S. Mokha, M.C. Constantinou and A.M. Reinhorn, Teflon bearing in base isolation. II: modelling, J. Struct. Engrg. ASCE, Vol. 116 (2), pp.455-474, (1990).
DOI: 10.1061/(asce)0733-9445(1990)116:2(455)
Google Scholar
[10]
W. H. Robinson and A. G. Tucker, A lead-rubber shear damper, Bull. N. 2. Natl. Soc. Earthquake Eng., 10, 151-153, (1977).
Google Scholar
[11]
W. H. Robinson, Lead rubber hysteretic bearings suitable for protecting structures during earthquakes, PEL Report No. 715, (1981).
DOI: 10.2140/siaps.2011.2.5
Google Scholar
[12]
D. Cancellara, M. Pasquino, Performance Based Design according to EC8: Fixed-Base vs. Base-Isolated RC frame structures, Ingegneria sismica, Vol.26, n.2, pp.50-61, (2009).
Google Scholar
[13]
D. Cancellara, M. Pasquino, Proposal of passive seismic control device: HDHSI (High Damping Hybrid Seismic Isolator), 8th International Conference on Structural Dynamics, 4-6 July 2011 Leuven, Belgium, (2011).
Google Scholar
[14]
D. Cancellara, M. Pasquino, A new passive seismic control device for protection of structures under anomalous seismic events, Applied Mechanics and Materials, Vol.82, pp.651-656, (2011).
DOI: 10.4028/www.scientific.net/amm.82.651
Google Scholar
[15]
EC8, Eurocode 8: Design of Structures for Earthquake Resistance - Part 1: General rules, seismic actions and rules for buildings, PrEN1998-1, European Committee for Standardization, TC250/SC8, (2003).
DOI: 10.3403/03244372u
Google Scholar
[16]
ESD,EuropeanStrong-motion Database, http://www.isesd.cv.ic.ac.uk/ESD/frameset.htm
Google Scholar
[17]
EC2, Eurocode 2: Design of concrete structures, UNI EN 1992-1-1, European Committee for Standardization, CEN/TC 250, (2004).
Google Scholar
[18]
D. Cancellara, F. De Angelis, V. Pasquino, Displacement based approach for the seismic retrofitting of a RC existing building designed for only gravitational loads, Applied Mechanics and Materials, Vol. 166-169, pp.1718-1729, (2012).
DOI: 10.4028/www.scientific.net/amm.166-169.1718
Google Scholar
[19]
M.C. Constantinou, Y.S. Tsoupelas, S. Okamoto, NCEER-TAISEI corporation research program on sliding seismic isolation systems for bridges: experimental and analytical studies, Rep. No. NCEER-93-0020, National Center for Earthquake Engineering Research, Buffalo, N.Y., (1993).
Google Scholar
[20]
F. De Angelis, An internal variable variational formulation of viscoplasticity, Computer Methods in Applied Mechanics and Engineering, Vol. 190, n. 1-2, pp.35-54, (2000).
DOI: 10.1016/s0045-7825(99)00306-0
Google Scholar
[21]
F. De Angelis, A variationally consistent formulation of nonlocal plasticity, Int. Journal for Multiscale Computational Engineering, Vol. 5, n. 2, pp.105-116, (2007).
DOI: 10.1615/intjmultcompeng.v5.i2.40
Google Scholar
[22]
F. De Angelis, Multifield potentials and derivation of extremum principles in rate plasticity, Materials Science Forum, Vol. 539-543, pp.2625-2630, (2007).
DOI: 10.4028/www.scientific.net/msf.539-543.2625
Google Scholar
[23]
F. De Angelis, Evolutive laws and constitutive relations in nonlocal viscoplasticity, Applied Mechanics and Materials, Vol. 152-154, pp.990-996, (2012).
DOI: 10.4028/www.scientific.net/amm.152-154.990
Google Scholar
[24]
F. De Angelis, A comparative analysis of linear and nonlinear kinematic hardening rules in computational elastoplasticity, Technische Mechanik, Vol. 32, n. 2-5, pp.164-173, (2012).
Google Scholar
[25]
G. Alfano, F. De Angelis, L. Rosati, General solution procedures in elasto/ viscoplasticity, Computer Methods in Applied Mechanics and Engineering, Vol. 190, pp.5123-5147, (2001).
DOI: 10.1016/s0045-7825(00)00370-4
Google Scholar
[26]
F. De Angelis, D. Cancellara, M. Modano, V. Pasquino, The consequence of different loading rates in elasto/viscoplasticity, Procedia Engineering, Vol. 10, pp.2911-2916, (2011).
DOI: 10.1016/j.proeng.2011.04.483
Google Scholar
[27]
F. De Angelis, D. Cancellara, Implications due to different loading programs in inelastic materials, Advanced Material Research, Vol. 422, pp.726-733, (2012).
DOI: 10.4028/www.scientific.net/amr.422.726
Google Scholar
[28]
F. De Angelis, D. Cancellara, Results of distinct modes of loading procedures in the nonlinear inelastic behavior of solids, Advanced Material Research, Vol. 482-484, pp.1004-1011, (2012).
DOI: 10.4028/www.scientific.net/amr.482-484.1004
Google Scholar