Magnetic Water Treatment to Inhibit Calcium Carbonate Scale Deposition in the Drainage System of an Old Tunnel in Seoul, South Korea

Article Preview

Abstract:

Drainage inlets at the Namsan #3 traffic tunnel in Seoul, South Korea were found to be clogged with calcium carbonate scale deposits. Officials were concerned the clogged drains would further stress the already deteriorating traffic tunnel and wanted to see if there were any practical and economical solutions in removing or preventing scale deposits. A tunnel drainage simulator was constructed to determine the feasibility of using magnets to inhibit scale precipitation and deposition. Test results from the simulation show 6.0 and 4.4 g of deposited calcium carbonate in pipes inclined at 2° and 5° respectively, while magnetically treated water resulted in 10.8 and 4.3 g of deposited calcium carbonate in pipes inclined at 2° and 5° respectively. Calcium carbonate scale samples from the tunnel drainage test underwent x-ray diffraction analysis and showed the magnetically treated water to precipitate more aragonite. The solubility product and crystalline structures of calcite and aragonite are able to help explain tunnel drainage test results and suggest water flow velocity to be a potentially important factor in calcium scale inhibition if magnets are used.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 594-597)

Pages:

2045-2055

Citation:

Online since:

November 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Korean Meteorological Administration: Annual Report 2011. Seoul, Korean Meteorological Administration, 2011.

Google Scholar

[2] I.M. Lee, M.S. Han, and J.S. Lee in: Major Tunneling Projects in Korea, International Symposium on Underground Excavation and Tunneling, ITA-AITES (2006), pp.75-84.

Google Scholar

[3] J.H. Shin, I.K. Lee, Y.H. Lee, and H.S. Shin in: Lessons from Serial Tunnel Collapses During Construction of the Seoul Subway Line 5, Safety in the underground space – Proceedings of the 2006 World Tunnel Congress and 32nd ITA General Assembly, Seoul, Korea, ITA-AITES (2006), pp.75-84.

DOI: 10.1016/j.tust.2005.12.154

Google Scholar

[4] National Highway Institute, U.S. Department of Transportation: Technical Manual for Design and Construction of Road Tunnels – Civil Elements. Report No. FHWA-NHI-10-034

Google Scholar

[5] California High-Speed Rail Authority: Technical Memorandum High Speed Train Tunnel Structures TM 2.4.5.

Google Scholar

[6] United States Department of Transportation: Highway and Rail Transit Tunnel Maintenance and Rehabilitation Manual 2005 Edition.

Google Scholar

[7] A. Bobet: Tunnelling and Underground Space Technology Vol. 18 (2003). "Effect of pore water pressure on tunnel support during static and seismic loading." pp.377-393.

DOI: 10.1016/s0886-7798(03)00008-7

Google Scholar

[8] S.W. Nam and A. Bobet: Tunnelling and Underground Space Technology Vol. 21 (2006). "Liner stresses in deep tunnels below the water table." pp.626-635.

DOI: 10.1016/j.tust.2005.11.004

Google Scholar

[9] J.H. Shin, T.I. Addenbrooke, and D.M. Potts: Geotechnique Vol. 52 (2002). "A numerical study of the effect of groundwater movement on long-term tunnel behavior." No 6, pp.391-403.

DOI: 10.1680/geot.2002.52.6.391

Google Scholar

[10] J.H. Shin, T.S. Nam, S.E. Chae and J.U. Yoon: Tunneling Technology Vol. 11 (2009). "Hydraulic and structural interaction of a double-lined tunnel lining due to drainhole blockings." No 3, pp.243-254. (in Korean).

Google Scholar

[11] ACI Committee 523: Guide for cellular concrete above 50 pcf and for aggregate concretes above 50 pcf with compressive strengths less than 2500 psi. ACI 523.3R-93, American Concrete Institute, Farmington Hills, MI, 1993.

DOI: 10.14359/11115

Google Scholar

[12] ACI Committee 523: Guide for Cast-in-Place Low-Density Cellular Concrete. ACI 523.1R-06, American Concrete Institute, Farmington Hills, MI, 2006.

Google Scholar

[13] G.C. Hoff: Cement and Concrete Research Vol. 2 (1972). "Porosity – strength considerations for cellular concrete." No 1, pp.91-100.

DOI: 10.1016/0008-8846(72)90026-9

Google Scholar

[14] M.M. Rößler and I. Odler: Cement and Concrete Research Vol. 15 (1985). "Investigations on the relationship between porosity, structure and strength of hydrated Portland cement pastes: I. Effect of porosity." No 2, pp.320-330.

DOI: 10.1016/0008-8846(85)90044-4

Google Scholar

[15] E.P. Kearsley and P.J. Wainwright: Cement and Concrete Research Vol. 32 (2002). "The effect of porosity on the strength of foamed concrete." No 2, pp.233-239.

DOI: 10.1016/s0008-8846(01)00665-2

Google Scholar

[16] E.K. Kunhanandan Nambiar and K. Ramamurthy: Cement and Concrete Research Vol. 37 (2007). "Air-void characterisation of foam concrete." No 2, pp.221-230.

DOI: 10.1016/j.cemconres.2006.10.009

Google Scholar

[17] M.N. Elliot: Desalination Vol. 6 (1969). "The present state of scale control in sea water evaporators." No 1, pp.87-104.

DOI: 10.1016/s0011-9164(00)80013-2

Google Scholar

[18] K. Harding, D.A. Brikdle, and F. Thorne: Desalination Vol. 27 (1978). "Chemical descaling of acid dosed desalination plants." No 3, pp.273-282.

DOI: 10.1016/s0011-9164(00)88118-7

Google Scholar

[19] N.M. Wade: Desalination Vol. 31 (1979). "A review of scale control methods." No 1-3, pp.309-320.

Google Scholar

[20] M.M. Reddy and A.R. Hoch: Journal of Colloid and Interface Science Vol. 235 (2001). "Calcite crystal growth rate inhibition by polycarboxylic acids." No 2, pp.87-104.

DOI: 10.1006/jcis.2000.7378

Google Scholar

[21] K.J. Westin and A.C. Rasmuson: Journal of Colloid and Interface Science Vol. 282 (2005). "Crystal growth of aragonite and calcite in presence of citric acid, dtpa, edta and pyromellitic acid." No 2, pp.359-369.

DOI: 10.1016/j.jcis.2004.03.029

Google Scholar

[22] C.C. Patton: Applied Water Technology (John M. Campbell and Company, USA 2007).

Google Scholar

[23] M.S. Tahir and M. Saleem: Journal of Faculty of Engineering and Technology Vol. 15 (2008). "Experimental study of chemical de-scaling-I: effect of acid concentration." No 1, pp.1-9.

Google Scholar

[24] D.F. Othmer: Desalination Vol. 1 (1966). "Evaporation for desalination – scale prevention and removal." No 2, pp.194-198.

DOI: 10.1016/s0011-9164(00)84018-7

Google Scholar

[25] J.P. Ranck: Desalination Vol. 6 (1969). "A preliminary technical and economic investigation of sea water deminerlizaation by ion-exchange for calcium and bicarbonate ions and their subsequent removal by thermal decomposition (1)." No 1, pp.75-85.

DOI: 10.1016/s0011-9164(00)80012-0

Google Scholar

[26] T. Vermeulen, B.W. Tleimat, and G. Klein: Desalination Vol. 47 (1983). "Ion-exchange pretreatment for scale prevention in desalting systems." No 1-3, pp.149-159.

DOI: 10.1016/0011-9164(83)87068-4

Google Scholar

[27] R. Rautenbach, H. Offermann, and E.E. Hammer: Desalination Vol. 47 (1983). "An assessment of different scale control methods." No 1-3, pp.49-62.

DOI: 10.1016/0011-9164(83)87061-1

Google Scholar

[28] Y.P. Lin and P.C. Singer: Water Research Vol. 39 (2005). "Inhibition of calcite crystal growth by polyphosphates." No 19, pp.4835-4843.

DOI: 10.1016/j.watres.2005.10.003

Google Scholar

[29] A.L. Litvin, S. Valiyaveettil, D.L. Kaplan, and S. Mann: Advanced Materials Vol. 9 (1997). "Template-directed synthesis of aragonite under supramolecular hydrogen-bonded Langmuir monolayers." No 2, pp.124-127.

DOI: 10.1002/adma.19970090205

Google Scholar

[30] J. Aizenberg: Journal of Crystal Growth Vol. 211 (2000). "Patterned crystallization of calcite in vivo and in vitro." No 3, pp.143-148.

DOI: 10.1016/s0022-0248(99)00814-3

Google Scholar

[31] K. Naka and Y. Chujo: Chemistry of Materials Vol. 13 (2001). "Control of crystal nucleation and growth of calcium carbonate by synthetic substrates." No 10, pp.3245-3259.

DOI: 10.1021/cm011035g

Google Scholar

[32] T.Y-J. Han and J. Aizenberg: Chemistry of Materials Vol. 20 (2008). "Calcium carbonate storage in amorphous form and its template-induced crystallization." No 3, pp.1064-1068.

DOI: 10.1021/cm702032v

Google Scholar

[33] H. Teghidet, M.C. Bernard, S. Borensztajn, L.Chaal, S. Joiret, and B. Saidani: Journal of Crystal Growth Vol. 331 (2011). "Calcite epitaxy on au and ag (1 1 1)." No 1, pp.72-77.

DOI: 10.1016/j.jcrysgro.2011.07.010

Google Scholar

[34] G.S. Li, J.J. Ma, X.M. Shen, and H.B. Chen: Proceedings of 9th American Waterjet Conference (1997). "A study on descaling of water injection tubing by water jet." pp.603-611.

Google Scholar

[35] Y.L. Zeng, X.W. Ouyang, W.Z. Lu, and G.H. Liu: Proceedings of 10th American Waterjet Conference (1999). "The study on the cleaning processing for under ground laid pipeline with large diameter using high pressure waterjet." 6 pp.

Google Scholar

[36] L. Larry: Personal communications (2012). Department of Transit Infrastructure and Engineering Services, Washington Metropolitan Area Transit Authority, February 29, 2012.

Google Scholar

[37] K.J. Kronenberg: IEEE Transactions on Magnetics Vol. 24 (1985). "Experimental evidence for effects of magnetic fields on moving water." No 10, pp.2059-2061.

DOI: 10.1109/tmag.1985.1064019

Google Scholar

[38] K. Higashitani, A. Kage, S. Katamura, K. Imai, and S. Hatade: Journal of Colloids and Interface Science Vol. 156 (1993). "Effects of a magnetic field on the formation of caco3 particles." No 1, pp.90-95.

DOI: 10.1006/jcis.1993.1085

Google Scholar

[39] K.W. Busch and M.A. Busch: Desalination Vol. 109 (1997). "Laboratory studies on magnetic water treatment and their relationship to a possible mechanism for scale reduction." No 2, pp.131-148.

DOI: 10.1016/s0011-9164(97)00059-3

Google Scholar

[40] Y. Wang, J. Babchin, L.T. Chernyi, R.S. Chow, and R.P. Sawatzky: Water Research Vol. 31 (1997). "Rapid onset of calcium carbonate crystallization under the influence of a magnetic field." No 2, pp.346-350.

DOI: 10.1016/s0043-1354(96)00243-6

Google Scholar

[41] R.A. Barrett and S.A. Parsons: Water Research Vol. 32 (1998). "The influence of magnetic fields on calcium carbonate precipitation." No 3, pp.609-612.

DOI: 10.1016/s0043-1354(97)00277-7

Google Scholar

[42] C. Gabrielli, R. Jaouhari, G. Maurin, and M. Keddam: Water Research Vol. 25 (2001). "Magnetic water treatment for scale prevention." No 13, pp.3249-3259.

DOI: 10.1016/s0043-1354(01)00010-0

Google Scholar

[43] G.J.C. Limpert and J.L. Raber: Materials Performance Vol. 21 (1985). "Tests of non-chemical scale control devices in a once-through system." No 5, pp.40-45.

Google Scholar

[44] J.S. Baker and S.J. Judd: Water Research Vol. 30 (1996). "Magnetic amelioration of scale formation." No 2, pp.247-260.

DOI: 10.1016/0043-1354(95)00184-0

Google Scholar

[45] Water Quality Association: WQA Magnetics Task Force Report. Illinois, USA, 2001.

Google Scholar

[46] K.W. Smothers, C.D. Curtiss, B.T. Gard, R.H. Strauss, and V.F. Hock: Public Works Technical Bulletin 420-49-34 (2001). "Magnetic Water Treatment." U.S. Army Corps of Engineers.

Google Scholar

[47] J.M.D. Coey and S. Cass: Journal of Magnetism and Magnetic Materials Vol. 209 (2000). "Magnetic water treatment." No 1-3, pp.71-74.

DOI: 10.1016/s0304-8853(99)00648-4

Google Scholar

[48] S. Kobe, G. Dražić, P.J. McGuiness, and J. Stažišar: Journal of Magnetism and Magnetic Materials Vol. 236 (2001). "The influence of the magnetic field on the crystallization form of calcium carbonate and the testing of a magnetic water-treatment device." No 1-2, pp.71-76.

DOI: 10.1016/s0304-8853(01)00432-2

Google Scholar

[49] S. Knez and C. Pohar: Journal of Colloids and Interface Science Vol. 281 (2005). "The magnetic field influence on the polymorph composition of caco3 precipitated from carbonized aqueous solutions." No 2, pp.377-388.

DOI: 10.1016/j.jcis.2004.08.099

Google Scholar

[50] P.W. Krauter, J.E. Harrar, S.P. Orloff, and S.M. Bahowick: Internal Report (Lawrence Livermore National Laboratory) OSTI 567404 (1996). "Test of a Magnetic Device for Amelioration of Scale Formation at Treatment Facility D."

DOI: 10.2172/567404

Google Scholar

[51] H. Nebel and M. Epple: Journal of Inorganic and General Chemistry Vol. 634 (2008). "Continuous preparation of calcite, aragonite and vaterite, and of magnesium-substituted amorphous calcium carbonate (mg-acc)." No 8, pp.1439-1443.

DOI: 10.1002/zaac.200800134

Google Scholar

[52] L.N. Plummer and E. Busenberg: Geochimica et Cosmochimica Acta Vol. 46 (1982). "The solubilities of calcite, aragonite and vaterite in co2-h2o solutions between 0 and 90c, and an evaluation of the aqueous model for the system caco3-co2-h2o." No 6, pp.1011-1040.

DOI: 10.1016/0016-7037(82)90056-4

Google Scholar