[1]
Korean Meteorological Administration: Annual Report 2011. Seoul, Korean Meteorological Administration, 2011.
Google Scholar
[2]
I.M. Lee, M.S. Han, and J.S. Lee in: Major Tunneling Projects in Korea, International Symposium on Underground Excavation and Tunneling, ITA-AITES (2006), pp.75-84.
Google Scholar
[3]
J.H. Shin, I.K. Lee, Y.H. Lee, and H.S. Shin in: Lessons from Serial Tunnel Collapses During Construction of the Seoul Subway Line 5, Safety in the underground space – Proceedings of the 2006 World Tunnel Congress and 32nd ITA General Assembly, Seoul, Korea, ITA-AITES (2006), pp.75-84.
DOI: 10.1016/j.tust.2005.12.154
Google Scholar
[4]
National Highway Institute, U.S. Department of Transportation: Technical Manual for Design and Construction of Road Tunnels – Civil Elements. Report No. FHWA-NHI-10-034
Google Scholar
[5]
California High-Speed Rail Authority: Technical Memorandum High Speed Train Tunnel Structures TM 2.4.5.
Google Scholar
[6]
United States Department of Transportation: Highway and Rail Transit Tunnel Maintenance and Rehabilitation Manual 2005 Edition.
Google Scholar
[7]
A. Bobet: Tunnelling and Underground Space Technology Vol. 18 (2003). "Effect of pore water pressure on tunnel support during static and seismic loading." pp.377-393.
DOI: 10.1016/s0886-7798(03)00008-7
Google Scholar
[8]
S.W. Nam and A. Bobet: Tunnelling and Underground Space Technology Vol. 21 (2006). "Liner stresses in deep tunnels below the water table." pp.626-635.
DOI: 10.1016/j.tust.2005.11.004
Google Scholar
[9]
J.H. Shin, T.I. Addenbrooke, and D.M. Potts: Geotechnique Vol. 52 (2002). "A numerical study of the effect of groundwater movement on long-term tunnel behavior." No 6, pp.391-403.
DOI: 10.1680/geot.2002.52.6.391
Google Scholar
[10]
J.H. Shin, T.S. Nam, S.E. Chae and J.U. Yoon: Tunneling Technology Vol. 11 (2009). "Hydraulic and structural interaction of a double-lined tunnel lining due to drainhole blockings." No 3, pp.243-254. (in Korean).
Google Scholar
[11]
ACI Committee 523: Guide for cellular concrete above 50 pcf and for aggregate concretes above 50 pcf with compressive strengths less than 2500 psi. ACI 523.3R-93, American Concrete Institute, Farmington Hills, MI, 1993.
DOI: 10.14359/11115
Google Scholar
[12]
ACI Committee 523: Guide for Cast-in-Place Low-Density Cellular Concrete. ACI 523.1R-06, American Concrete Institute, Farmington Hills, MI, 2006.
Google Scholar
[13]
G.C. Hoff: Cement and Concrete Research Vol. 2 (1972). "Porosity – strength considerations for cellular concrete." No 1, pp.91-100.
DOI: 10.1016/0008-8846(72)90026-9
Google Scholar
[14]
M.M. Rößler and I. Odler: Cement and Concrete Research Vol. 15 (1985). "Investigations on the relationship between porosity, structure and strength of hydrated Portland cement pastes: I. Effect of porosity." No 2, pp.320-330.
DOI: 10.1016/0008-8846(85)90044-4
Google Scholar
[15]
E.P. Kearsley and P.J. Wainwright: Cement and Concrete Research Vol. 32 (2002). "The effect of porosity on the strength of foamed concrete." No 2, pp.233-239.
DOI: 10.1016/s0008-8846(01)00665-2
Google Scholar
[16]
E.K. Kunhanandan Nambiar and K. Ramamurthy: Cement and Concrete Research Vol. 37 (2007). "Air-void characterisation of foam concrete." No 2, pp.221-230.
DOI: 10.1016/j.cemconres.2006.10.009
Google Scholar
[17]
M.N. Elliot: Desalination Vol. 6 (1969). "The present state of scale control in sea water evaporators." No 1, pp.87-104.
DOI: 10.1016/s0011-9164(00)80013-2
Google Scholar
[18]
K. Harding, D.A. Brikdle, and F. Thorne: Desalination Vol. 27 (1978). "Chemical descaling of acid dosed desalination plants." No 3, pp.273-282.
DOI: 10.1016/s0011-9164(00)88118-7
Google Scholar
[19]
N.M. Wade: Desalination Vol. 31 (1979). "A review of scale control methods." No 1-3, pp.309-320.
Google Scholar
[20]
M.M. Reddy and A.R. Hoch: Journal of Colloid and Interface Science Vol. 235 (2001). "Calcite crystal growth rate inhibition by polycarboxylic acids." No 2, pp.87-104.
DOI: 10.1006/jcis.2000.7378
Google Scholar
[21]
K.J. Westin and A.C. Rasmuson: Journal of Colloid and Interface Science Vol. 282 (2005). "Crystal growth of aragonite and calcite in presence of citric acid, dtpa, edta and pyromellitic acid." No 2, pp.359-369.
DOI: 10.1016/j.jcis.2004.03.029
Google Scholar
[22]
C.C. Patton: Applied Water Technology (John M. Campbell and Company, USA 2007).
Google Scholar
[23]
M.S. Tahir and M. Saleem: Journal of Faculty of Engineering and Technology Vol. 15 (2008). "Experimental study of chemical de-scaling-I: effect of acid concentration." No 1, pp.1-9.
Google Scholar
[24]
D.F. Othmer: Desalination Vol. 1 (1966). "Evaporation for desalination – scale prevention and removal." No 2, pp.194-198.
DOI: 10.1016/s0011-9164(00)84018-7
Google Scholar
[25]
J.P. Ranck: Desalination Vol. 6 (1969). "A preliminary technical and economic investigation of sea water deminerlizaation by ion-exchange for calcium and bicarbonate ions and their subsequent removal by thermal decomposition (1)." No 1, pp.75-85.
DOI: 10.1016/s0011-9164(00)80012-0
Google Scholar
[26]
T. Vermeulen, B.W. Tleimat, and G. Klein: Desalination Vol. 47 (1983). "Ion-exchange pretreatment for scale prevention in desalting systems." No 1-3, pp.149-159.
DOI: 10.1016/0011-9164(83)87068-4
Google Scholar
[27]
R. Rautenbach, H. Offermann, and E.E. Hammer: Desalination Vol. 47 (1983). "An assessment of different scale control methods." No 1-3, pp.49-62.
DOI: 10.1016/0011-9164(83)87061-1
Google Scholar
[28]
Y.P. Lin and P.C. Singer: Water Research Vol. 39 (2005). "Inhibition of calcite crystal growth by polyphosphates." No 19, pp.4835-4843.
DOI: 10.1016/j.watres.2005.10.003
Google Scholar
[29]
A.L. Litvin, S. Valiyaveettil, D.L. Kaplan, and S. Mann: Advanced Materials Vol. 9 (1997). "Template-directed synthesis of aragonite under supramolecular hydrogen-bonded Langmuir monolayers." No 2, pp.124-127.
DOI: 10.1002/adma.19970090205
Google Scholar
[30]
J. Aizenberg: Journal of Crystal Growth Vol. 211 (2000). "Patterned crystallization of calcite in vivo and in vitro." No 3, pp.143-148.
DOI: 10.1016/s0022-0248(99)00814-3
Google Scholar
[31]
K. Naka and Y. Chujo: Chemistry of Materials Vol. 13 (2001). "Control of crystal nucleation and growth of calcium carbonate by synthetic substrates." No 10, pp.3245-3259.
DOI: 10.1021/cm011035g
Google Scholar
[32]
T.Y-J. Han and J. Aizenberg: Chemistry of Materials Vol. 20 (2008). "Calcium carbonate storage in amorphous form and its template-induced crystallization." No 3, pp.1064-1068.
DOI: 10.1021/cm702032v
Google Scholar
[33]
H. Teghidet, M.C. Bernard, S. Borensztajn, L.Chaal, S. Joiret, and B. Saidani: Journal of Crystal Growth Vol. 331 (2011). "Calcite epitaxy on au and ag (1 1 1)." No 1, pp.72-77.
DOI: 10.1016/j.jcrysgro.2011.07.010
Google Scholar
[34]
G.S. Li, J.J. Ma, X.M. Shen, and H.B. Chen: Proceedings of 9th American Waterjet Conference (1997). "A study on descaling of water injection tubing by water jet." pp.603-611.
Google Scholar
[35]
Y.L. Zeng, X.W. Ouyang, W.Z. Lu, and G.H. Liu: Proceedings of 10th American Waterjet Conference (1999). "The study on the cleaning processing for under ground laid pipeline with large diameter using high pressure waterjet." 6 pp.
Google Scholar
[36]
L. Larry: Personal communications (2012). Department of Transit Infrastructure and Engineering Services, Washington Metropolitan Area Transit Authority, February 29, 2012.
Google Scholar
[37]
K.J. Kronenberg: IEEE Transactions on Magnetics Vol. 24 (1985). "Experimental evidence for effects of magnetic fields on moving water." No 10, pp.2059-2061.
DOI: 10.1109/tmag.1985.1064019
Google Scholar
[38]
K. Higashitani, A. Kage, S. Katamura, K. Imai, and S. Hatade: Journal of Colloids and Interface Science Vol. 156 (1993). "Effects of a magnetic field on the formation of caco3 particles." No 1, pp.90-95.
DOI: 10.1006/jcis.1993.1085
Google Scholar
[39]
K.W. Busch and M.A. Busch: Desalination Vol. 109 (1997). "Laboratory studies on magnetic water treatment and their relationship to a possible mechanism for scale reduction." No 2, pp.131-148.
DOI: 10.1016/s0011-9164(97)00059-3
Google Scholar
[40]
Y. Wang, J. Babchin, L.T. Chernyi, R.S. Chow, and R.P. Sawatzky: Water Research Vol. 31 (1997). "Rapid onset of calcium carbonate crystallization under the influence of a magnetic field." No 2, pp.346-350.
DOI: 10.1016/s0043-1354(96)00243-6
Google Scholar
[41]
R.A. Barrett and S.A. Parsons: Water Research Vol. 32 (1998). "The influence of magnetic fields on calcium carbonate precipitation." No 3, pp.609-612.
DOI: 10.1016/s0043-1354(97)00277-7
Google Scholar
[42]
C. Gabrielli, R. Jaouhari, G. Maurin, and M. Keddam: Water Research Vol. 25 (2001). "Magnetic water treatment for scale prevention." No 13, pp.3249-3259.
DOI: 10.1016/s0043-1354(01)00010-0
Google Scholar
[43]
G.J.C. Limpert and J.L. Raber: Materials Performance Vol. 21 (1985). "Tests of non-chemical scale control devices in a once-through system." No 5, pp.40-45.
Google Scholar
[44]
J.S. Baker and S.J. Judd: Water Research Vol. 30 (1996). "Magnetic amelioration of scale formation." No 2, pp.247-260.
DOI: 10.1016/0043-1354(95)00184-0
Google Scholar
[45]
Water Quality Association: WQA Magnetics Task Force Report. Illinois, USA, 2001.
Google Scholar
[46]
K.W. Smothers, C.D. Curtiss, B.T. Gard, R.H. Strauss, and V.F. Hock: Public Works Technical Bulletin 420-49-34 (2001). "Magnetic Water Treatment." U.S. Army Corps of Engineers.
Google Scholar
[47]
J.M.D. Coey and S. Cass: Journal of Magnetism and Magnetic Materials Vol. 209 (2000). "Magnetic water treatment." No 1-3, pp.71-74.
DOI: 10.1016/s0304-8853(99)00648-4
Google Scholar
[48]
S. Kobe, G. Dražić, P.J. McGuiness, and J. Stažišar: Journal of Magnetism and Magnetic Materials Vol. 236 (2001). "The influence of the magnetic field on the crystallization form of calcium carbonate and the testing of a magnetic water-treatment device." No 1-2, pp.71-76.
DOI: 10.1016/s0304-8853(01)00432-2
Google Scholar
[49]
S. Knez and C. Pohar: Journal of Colloids and Interface Science Vol. 281 (2005). "The magnetic field influence on the polymorph composition of caco3 precipitated from carbonized aqueous solutions." No 2, pp.377-388.
DOI: 10.1016/j.jcis.2004.08.099
Google Scholar
[50]
P.W. Krauter, J.E. Harrar, S.P. Orloff, and S.M. Bahowick: Internal Report (Lawrence Livermore National Laboratory) OSTI 567404 (1996). "Test of a Magnetic Device for Amelioration of Scale Formation at Treatment Facility D."
DOI: 10.2172/567404
Google Scholar
[51]
H. Nebel and M. Epple: Journal of Inorganic and General Chemistry Vol. 634 (2008). "Continuous preparation of calcite, aragonite and vaterite, and of magnesium-substituted amorphous calcium carbonate (mg-acc)." No 8, pp.1439-1443.
DOI: 10.1002/zaac.200800134
Google Scholar
[52]
L.N. Plummer and E. Busenberg: Geochimica et Cosmochimica Acta Vol. 46 (1982). "The solubilities of calcite, aragonite and vaterite in co2-h2o solutions between 0 and 90c, and an evaluation of the aqueous model for the system caco3-co2-h2o." No 6, pp.1011-1040.
DOI: 10.1016/0016-7037(82)90056-4
Google Scholar