[1]
Diederichs, M.S., Kaiser, P.K., Eberhardt, E. 2004. Damage initiation and propagation in hard rock during tunneling and the influence of near-face stress rotation. International Journal of Rock Mechanics & Mining Sciences 41: 785-812.
DOI: 10.1016/j.ijrmms.2004.02.003
Google Scholar
[2]
He , M.C. Wang , C.G. Feng , J.L. et al. 2010. Experimental investigations on gas desorption and transport in stressed coal under isothermal conditions. International Journal of Coal Geology. 83: 377-386.
DOI: 10.1016/j.coal.2010.05.003
Google Scholar
[3]
Rutqvist, J., Wu, Y.S., Tsang, C.F., Bodvarsson, G., 2002. A modeling approach for analysis of coupled multiphase fluid flow, heat transfer, andd eformation in fracturedporous rock. International Journal of Rock Mechanics & Mining Sciences 39 (2002).
DOI: 10.1016/s1365-1609(02)00022-9
Google Scholar
[4]
Li, X.Z., Hua, A.Z. 2006. Prediction and prevention of sandstone-gas outbursts in coal mines. International Journal of Rock Mechanics & Mining Sciences 43: 2-18.
DOI: 10.1016/j.ijrmms.2005.03.021
Google Scholar
[5]
Molli, G., Cortecci, G., Vaselli, L., 2010. Fault zone structure and fluid-rock interaction of a high angle normal fault in Carrara marble (NW Tuscany, Italy). Journal of Structural Geology 32: 1334 -1348.
DOI: 10.1016/j.jsg.2009.04.021
Google Scholar
[6]
Molli, G., Cortecci, G., Vaselli, L., 2010. Fault zone structure and fluid-rock interaction of a high angle normal fault in Carrara marble (NW Tuscany, Italy). Journal of Structural Geology 32: 1334 -1348.
DOI: 10.1016/j.jsg.2009.04.021
Google Scholar
[7]
Storti, F., Billi, A., Salvini, F., 2003. Particle size distribution in natural carbonate fault rocks: insights for non-self similar cataclasis. Earth and Planetary Science Letters 206, 173-186.
DOI: 10.1016/s0012-821x(02)01077-4
Google Scholar
[8]
Micarelli, L., Benedicto, A., Wibberley, C.A.J., 2006. Structural evolution and permeability of normal fault zones in highly porous carbonate rocks. Journal of Structural Geology 28, 1214-1227.
DOI: 10.1016/j.jsg.2006.03.036
Google Scholar
[9]
Lespinasse, M., 1999. Are fluid inclusion planes useful in structural geology. Journal of Structural Geology 21 (8-9): 1237- 1243.
DOI: 10.1016/s0191-8141(99)00027-9
Google Scholar
[10]
Lespinasse, M., De´sindes, L., Fratczak, P., Petrov, V. 2005. Microfissural mapping of natural cracks in rocks: Implications for fluid transfers quantification in the crust. Chemical Geology 223: 170- 178.
DOI: 10.1016/j.chemgeo.2005.05.009
Google Scholar
[11]
Marisett S D. Assessing pillar design at INCO'S Creighton mine using the local energy release density method. Queen's University, Canada, December (2001).
Google Scholar
[12]
Mercer R A, Bawden W F. 2005. A statistical approach for the integrated analysis of mine-induced seismicity and numerical stress estimates, a case study-Part I: developing the relations. International Journal of Rock Mechanics and Mining Sciences, 42: 47-72.
DOI: 10.1016/j.ijrmms.2004.07.006
Google Scholar
[13]
SNOLAB user's handbook, Revision 2, 2006, pp: 21.
Google Scholar
[14]
Alkana, H., Cinarb, Y., Pusch, G. 2007. Rock salt dilatancy boundary from combined acoustic emission and triaxial compression tests. International Journal of Rock Mechanics & Mining Sciences 44: 108-119.
DOI: 10.1016/j.ijrmms.2006.05.003
Google Scholar
[15]
Chen, Y., Wong, T.F., Liu, E.R. Rock physics. Anhui, . Anhui: University of Science and Technology of China Press, 2009, pp: 86.
Google Scholar
[16]
Zhao, Y.S. 1994. Rock Fluid Mechanics in Mine. Coal industrial Press, Beijing. pp: 84.
Google Scholar