[1]
Y.K. Li and M. Hu, Stability and Hopf bifurcation analysis in a stage-structured predator-prey system with two time delays, Int. J. Comput. Math. Sci. 5(3)(2011) 1501-1509.
Google Scholar
[2]
W. Han and M.X. Liu, Stability and bifurcation analysis for a discrete-time model of Lokta-Volterra type with delay, Appl. Math. Comput. 217(12)(2011) 5449-5457.
DOI: 10.1016/j.amc.2010.12.014
Google Scholar
[3]
J. Hale, Theory of Functional Differential Equation, Springer-Verlag, 1977.
Google Scholar
[4]
Y. Muroya, Persistence and global stability in discrete models of Lokta-Volterra type, J. Math. Anal. App. 330(1)(2007)24-33.
Google Scholar
[5]
Y. Kuang, Delay Differential Equations With Applications in Population Dynamics. Academic Press, INC, 1993.
Google Scholar
[6]
S. G. Ruan and J. J. Wei, On the zero of some transcendential functions with applications to stability of delay differential equations with two delays, Dyn. Contin. Discrete Impuls. Syst., Ser. A, Math. Anal. 10(2003)863-874.
Google Scholar
[7]
G.I. Bischi and F. Tramontana, Three-dimensional discrete Lotka-Volterra models with an application to industrial clusters, Commun. Nonlinear Sci. Numer.l Simul. 15(10) (2010) 3000-3014.
DOI: 10.1016/j.cnsns.2009.10.021
Google Scholar