The Variations of Organic Fluorescent Property in the Effluents from Biotreatment Unit Followed by Constructed Wetland Process

Article Preview

Abstract:

In this study, EEFM (Excitation emission fluorescent matrix) was used to evaluate the variation of organic characteristic of both source sewages into WuYiShan wastewater treatment. Similar organic property for both source sewages was identified, having four peaks, respectively belonging to fulvic acid, humic acid, aromatic protein and soluble microbial by-product. The fluorescent intensity (FI) of dominant humic acid fraction increased after biological treatment, and decreased in constructed wetland. UV process could result the increase of FI value of humic acid. However, the ratio of FI value of peak location in soluble microbial by-product to fulvic acid, called as Fs/Ff, continuously had an ascent after the biotreatment, constructed wetland and UV process. The organic property was apparently affected by the interior microorganism activity.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

395-399

Citation:

Online since:

November 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. F. Dignac, P. Ginestet, D. Ryback, A. Bruchet, V. Urbain, and P. Scribe, "Fate of wastewater organic pollution during activated sludge treatment: nature of residual organic matter", Water Research, Vol.34(17) (2000) ,pp.4185-4194.

DOI: 10.1016/s0043-1354(00)00195-0

Google Scholar

[2] H. K. Shon, S. Vigneswaran, and S. A. Snyder, "Effluent Organic Matter (EfOM) in Wastewater: Constituents, Effects, and Treatment", Critical Reviews in Environmental Science and Technology, Vol.36 (2006),pp.327-374.

DOI: 10.1080/10643380600580011

Google Scholar

[3] D. J. Barker, G. A. Mannucchi, S. M. L. Salvi, and D.C. Stuckey, "Characterisation of soluble residual chemical oxygen demand (COD) in anaerobic wastewater treatment effluents", Water Research,Vol.33(11) (1999) ,pp.2499-2510.

DOI: 10.1016/s0043-1354(98)00489-8

Google Scholar

[4] S. F. Aquino, A. Y. Hu, A. Akram, and D. C. Stuckey, "Characterization of dissolved compounds in submerged anaerobic membrane bioreactors (SAMBRs)", Journal of Chemical Technology and Biotechnology, Vol.81(2006) ,pp.1894-1904.

DOI: 10.1002/jctb.1622

Google Scholar

[5] S. F. Aqunio, and D. C. Stuckey,"Soluble microbial products formation in anaerobic chemostats in the presence of toxic compounds", Water Research, Vol.38(2004) ,pp.255-266.

DOI: 10.1016/j.watres.2003.09.031

Google Scholar

[6] S. Rosenberger, C. Laabs, B. Lesjean, R. Gnirss, G. Amy, M. Jekel, and J.C. Schrotter, "Impact of colloidal and soluble organic material on membrane performance in membrane bioreactors for municipal wastewater treatment", Water Research, Vol.40(4) (2006) ,pp.710-720.

DOI: 10.1016/j.watres.2005.11.028

Google Scholar

[7] A.T. Chow, S. Gao, and R. A. Dahlgren,Physical and chemical fractionation of dissolved organic matter and trihalomethaneprecursors: a review", Journal of Water Supply: Research and Technology-AQUA, Vol.54( 8) (2005) ,pp.475-507.

DOI: 10.2166/aqua.2005.0044

Google Scholar

[8] J. Świetlik, A. Dąbrowska, U. Raczyk-Stanisławiak, and J. Nawrocki, "Reactivity of natural organic matter fractions with chlorine dioxide and ozone", Water Research, Vol.38 (2004) ,pp.547-558.

DOI: 10.1016/j.watres.2003.10.034

Google Scholar

[9] S. L. Huo, B. D. Xi, H.C. Yu, L. S. He, S. L. Fan, and H. L. Liu, "Characteristics of dissolved organic matter (DOM) in leachate with different landfill ages". Journal of Environmental Sciences, Vol. 20(2008) ,pp.492-498.

DOI: 10.1016/s1001-0742(08)62085-9

Google Scholar

[10] K. R. Murphy, C. A. Stedmon, T. D. Waite, and G. M. Ruiz, "Distinguishing between terrestrial and autochthonous organic matter sources in marine environments using fluorescence spectroscopy", MarineChemistry, Vol.108(2008) ,pp.40-58.

DOI: 10.1016/j.marchem.2007.10.003

Google Scholar

[11] W. H. Li, G. P. Sheng, X. W. Liu, and H. Q. YU, "Characterizing the extracellular and intracellular fluorescent products of activated sludge in a sequencing batch reactor", Water Research, Vol.42(2008) ,pp.3173-3181.

DOI: 10.1016/j.watres.2008.03.010

Google Scholar

[12] N. N. Hanh, D. Claude, and T. M. Canh, "Synchronous-scan fluorescence of algal cells for toxicity assessment of heavy metals and herbicides", Ecotoxicology and Environmental Safety, Vol.72(2009) : 316-320.

DOI: 10.1016/j.ecoenv.2008.04.016

Google Scholar

[13] W.Chen, P.Westerhoff, J.A. Leenheer, and K. Booksh, "Fluorescence excitation-emission matrix regional integration to quantify spectra for dissolved organic matter", Environmental Science and Technology, Vol.37(2003) ,pp.5701-5710.

DOI: 10.1021/es034354c

Google Scholar

[14] W.L. Lai, L.F. Chen, S.W. Liao, S.L. Hsu, L.H. Zeng, C.L. Miaw, Using EEFM (Excitation Emission Fluorescence Matrix) to differentiate the Organic Properties of the Effluents from the Ozonated Biofilters, Water, Air, and Soil pollution, 186 (2007), 43-53.

DOI: 10.1007/s11270-007-9461-6

Google Scholar

[15] J. J. Alberts, and M. Takács, "Comparison of the natural fluorescence distribution among size fractions of terrestrial fulvic and humic acids and aquatic natural organic matter", Organic Geochemistry, Vol.35(2004) ,pp.1141-1149.

DOI: 10.1016/j.orggeochem.2004.06.010

Google Scholar

[16] K. Mopper, & C. A. Schultz, " Fluorescence as a possible tool for studying the nature and water column distribution of DOC components", Marine Chemistry, Vol.41(1993) ,pp.229-238.

DOI: 10.1016/0304-4203(93)90124-7

Google Scholar

[17] D. M. McKnight, E. W. Boyer, P. K. Westerhoff, P. T. Doran, T. Kulbe, and D. T. Anderson, "Spectro fluorometric characterization of dissolved organic matter for indication of precursor organic material and aromaticity", Limnol Oceanoor, Vol.46(1) (2001) ,pp.38-48.

DOI: 10.4319/lo.2001.46.1.0038

Google Scholar