The Significance of Experiment in the Finite Element Analysis of a Pulley Forming Process

Abstract:

Article Preview

For reasons of cost and weight, light gauge sheet is used wherever possible for metal fabrications. In sheet metal forming the process is to gather the metal into defined areas. The pulley forming process is no exception and is achieved by superimposing axial loads on top of radial loads using a pressure-controlled tailstock. Whilst the headstock-mounted tooling is fixed, that part held on the tailstock can be powered axially under controlled pressure. This pressure is governed by the width of the workpiece which changes during the forming process. Experiments have been designed to provide an understanding of the pulley forming process and to verify numerical models. The latter has been taken the form of finite element simulations to enable prediction of metal flow, tool forces and potential sources of defects and failures. There are three objectives for conducting the experiments which have been investigated in this paper: 1. providing data to define the movements of the forming tools for the finite element model, including displacements and velocities, 2. understanding the effects of the pulley forming operation on the flow of material, and 3. validating the finite element model.

Info:

Periodical:

Main Theme:

Edited by:

M. Geiger, J. Duflou, H.J.J. Kals, B. Shirvani and U.P. Singh

Pages:

615-622

DOI:

10.4028/www.scientific.net/AMR.6-8.615

Citation:

X. H. Liu et al., "The Significance of Experiment in the Finite Element Analysis of a Pulley Forming Process", Advanced Materials Research, Vols. 6-8, pp. 615-622, 2005

Online since:

May 2005

Export:

Price:

$35.00

In order to see related information, you need to Login.

In order to see related information, you need to Login.