Novel Concept of Experimental Setup for Characterisation of Plastic Yielding of Sheet Metal at Elevated Temperatures

Article Preview

Abstract:

In times of highest significance of process modelling and numerical simulation characterisation of material properties is of special importance for tools’ and components’ dimensioning. But in general material properties depend on many different influencing variables, e.g. temperature, humidity and many others. Especially in fields of sheet metal forming the mechanical behaviour of components highly differs according to real stress condition. In particular yield loci combine the information of beginning of yielding with a biaxial stress condition, but nevertheless for many materials they have not been determined yet. For all others the existing values are available only at room temperature. In this paper a novel concept of the experimental setup is shown, with which plastic yielding of sheet metal can be examined also at elevated temperatures. In usual biaxial tension tests cruciform specimen are drawn in plane. The new machine-concept, which is presented in this paper, is based on a punch-load moving perpendicular to the sheet. By clamping the specimen restoring forces are induced, which cause in dependence of special developed tool and work piece geometries defined stress conditions. Using an optical measurement system for determination of strains with CCDcameras of very high frame rate allows exact identification of starting plastification by offline analysis. Experiments at elevated temperatures are realised by local heating with a diode laser and a special optical system to reach a homogenous distribution of temperatures in the forming zone. On the one hand these investigations are necessary for many materials to achieve further information on characteristic properties in warm forming, because their data are only known at room temperature. On the other hand some materials, e.g. magnesium wrought alloys, are mostly formed at elevated temperatures (here in the range of 200°C to 250°C), because of its significant higher formability. Thus, material behaviour must be characterised at these temperatures.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

657-664

Citation:

Online since:

May 2005

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2005 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] W. Müller: Beitrag zur Charakterisierung von Blechwerkstoffen unter mehrachsiger Beanspruchung (Springer Verlag, Germany 1996).

DOI: 10.1007/978-3-662-01062-4

Google Scholar

[2] G. Grewolls, R. Kreißig: Eur. Jour. Mech. A/Solids Vol. 20 (2001), pp.585-599.

Google Scholar

[3] C. Dalle Donne, K. -H. Trautmann, R.D. Lohr, R. Bardenheier: Experimentelle Simulation mehraxialer Belastungszustände, Auslegung kreuzförmiger Proben für ebene, biaxiale Belastungsversuche (Teil 2). In: H. Frenz, A. Wehrstedt (eds. ): Kennwertermittlung für die Praxis (Wiley-VCH, Germany 2003), pp.167-172.

DOI: 10.1002/9783527610310.ch19

Google Scholar

[4] Y. Maeda, M. Yanagawa, F. Barlat, K. Chung, Y. Hayashida, S. Hattori, K. Matsui, J.C. Brem, D.J. Lege, S.J. Murtha, T. Ishikawa: International Journal of Plasticity Vol. 14 (1998), pp.301-318.

DOI: 10.1016/s0749-6419(97)00065-x

Google Scholar

[5] E. Hoferlin, A. Van Bael, P. Van Houtte, G. Steyaert, C. De Maré: Journal of Materials Processing Technology Vol. 80-81 (1998), pp.545-550.

DOI: 10.1016/s0924-0136(98)00123-x

Google Scholar

[6] M.C. Butuc, D. Banabic, A. Barata da Rocha, J.J. Garcio, J. Ferreira Duarte, P. Jurco, D.S. Comsa: Journal of Materials Processing Technology Vol. 125-126 (2002), pp.281-286.

DOI: 10.1016/s0924-0136(02)00399-0

Google Scholar

[7] D. Banabic, S. Comsa, G. Cosovici, Wagner, S.: Neuere Entwicklungen in der Beschreibung der plastischen Anisotropie von Aluminiumblechwerkstoffen. In: Neuere Entwicklungen in der Blechumformung (MAT INFO, Germany 2004), pp.443-457.

DOI: 10.1007/978-3-322-85990-7_9

Google Scholar

[8] D. Banabic, W. Müller, K. Pöhlandt: Experimental determination of yield locus for sheet metals. In: J. -L. Chenot et al. (eds. ): Proc. 1st ESAFORM Conf. on Material Forming (Sophia Antipolis, France 1998), pp.179-182.

Google Scholar

[9] T. Kuwabara, S. Ikeda: Plane-strain tension test of steel sheet using servo-controlled biaxial tensile testing machine. In: M. Pietrzyk, Z. Mitura, J. Kaczmar (eds. ): Proc. 5th ESAFORM Conf. on Material Forming (Akapit, Poland 2002), pp.499-502.

Google Scholar

[10] J. Heerens, D. Steglich, W. Brocks, X. Yu: Ermittlung von Kennwerten für Umformvorgänge. In: H. Frenz, A. Wehrstedt (eds. ): Kennwertermittlung für die Praxis (Wiley-VCH, Germany 2003), pp.117-124.

DOI: 10.1002/9783527610310.ch12

Google Scholar

[11] M. Borsutzki, L. Kessler, H. -M. Sonne: Kennzeichnung des Verfestigungsverhaltens von Werkstoffen mit der Biaxialprüfung. In: H. Frenz, A. Wehrstedt (eds. ): Kennwertermittlung für die Praxis (Wiley-VCH, Germany 2003), pp.186-192.

DOI: 10.1002/9783527610310.ch23

Google Scholar

[12] D. Banabic, K. Pöhlandt: UTF science Vol. 4 (2001), pp.19-27.

Google Scholar

[13] M. Geiger, W. Hußnätter, M. Kerausch, M. Merklein, M. Pitz: Verfahren und Vorrichtung zur Durchführung von Fließortkurven-Tiefungsversuchen an Blech-Probekörpern. German patent application DE 103 40 125. 3 (Germany, 2003).

Google Scholar

[14] S.K. Singh, K. Srinivasan, D. Chakraborty: Materials and Design Vol. 24 (2003), pp.471-481.

Google Scholar

[15] H. Friebe, K. Galanulis: Flächenhafte optische Deformationsanalyse in der Hochgeschwindigkeitsbeanspruchung. In: H. Frenz, A. Wehrstedt (eds. ): Kennwertermittlung für die Praxis (Wiley-VCH, Germany 2003), pp.111-116.

DOI: 10.1002/9783527610310.ch11

Google Scholar