[1]
T. Maki Morphology and Substructure of Martensite in Steels,. Phase Transformations in Steels. (Volume 2). Australia. p.680. (2012).
DOI: 10.1533/9780857096111.1.34
Google Scholar
[2]
O. Tihonkova, N. Popova, A. Tsellermaer, V. Gromov, E. Kozlov Influence of Tempering on the Phase Composition of Cast Moderately Alloyed Structural Steel, / Steel in Translation. - №2. - Vol. 37. - pp.110-114. (2007).
DOI: 10.3103/s0967091207020076
Google Scholar
[3]
M. Umemoto, E. Yoshitake, J. Tamura The Morphology of Martensite in Fe-C, Fe-Ni-C, Fe-Cr-C Alloys, / J. Mater. Science. -V. 18, №10. -pp.2893-2904. (1983).
DOI: 10.1007/bf00700770
Google Scholar
[4]
A. Gromova, I. Ivanov, S. Vorobev, S. Konovalov Dislocation Substructures Evolution in Steels Under Fatigue, / Metal. - №5. -pp.24-26. (2005).
Google Scholar
[5]
M. Calcagnotto, Y. Adachi, D. Ponge, D. Raabe Deformation and Fracture Mechanisms in Fine-and Ultrafine-Grained Ferrite/Martensite Dual-Phaze Steels and the Effect of Aging, / Acta Materiala. - №59. -pp.658-670. (2011).
DOI: 10.1016/j.actamat.2010.10.002
Google Scholar
[6]
K. Endrews, D. Daison, S. Kioun Electron-Diffraction Patterns and Their Interpretation,. – М.: Mir, - p.256. (1971).
Google Scholar
[7]
L. Utevskiy Diffraction Electronic Microscopy in Material Study,. – М.: Metallurgy, – p.584. (1973).
Google Scholar
[8]
V Rybin. Large Plastic Deformations and Metals Breakdown,. – М.: Metallurgy, – p.224. (1986).
Google Scholar
[9]
E. Kozlov, N. Popova, N. Grigoryeva Stages of Plastic Deformations, Sub-Structure Evolution, and Picture of Sliding in Alloys with Dispersed Hardening, / News of Higher Education Institutions. Physics - №3. – pp.112-128. (1991).
Google Scholar
[10]
E. Kozlov, N. Popova, V. Ignatenko Sub-Structure Type Affect on Re-Distribution of Carbon in Steel of Martensite Type in the Process of Plastic Deformation, / News of Higher Education Institutions. Physics –- №3. – pp.72-86. (2002).
Google Scholar