Preparation, Characterization of Cu Nanowires and their Tribological Property in Liquid Paraffin

Article Preview

Abstract:

In order to synthesize morphology and structure-controlled nano-copper, chemical reduction synthesis method was used coalescing microwave-assisted and modification. Cu nanowires with diameters of 20 to 25nm and lengths of 1.2 to 2.1μm were yielded by reduction of copper acetate tetrahydrate of (1, 2)-propanediol system using ascorbic acid as a reductant, polyethylene sorbitan monooleate (Tween 80) as a modifier and by microwave-assisted heating. The microstructure of these nanowires has been characterized by XRD and TEM. The XRD patterns indicate that the lattice parameters of these Cu nanowires are enlarged about 1.162% while the lattice parameters of Cu nanospheres are reduced about 1.024%. The growth mechanism of Cu nanowires is also suspected. The anti--wear and reducing friction performance of liquid paraffin with either Cu nanowires or Cu nanospheres has been measured by ball--on--disk UMT--II tribometer. It is found that the tribological performance of liquid paraffin with nano-Cu is improved, and the enhancement of improvement with Cu nanowires is better than with Cu nanospheres.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

84-88

Citation:

Online since:

December 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] X. F. Tang, Z. G. Yang and W. J. Wang. Colloid. Surface. A. Vol. 360 (2010), p.99.

Google Scholar

[2] X. F. Zhang, X. N. Cheng, H. B. Yin, J. Yuan and C. Xu. Appl Surf Sci. Vol. 254 (2008), p.5757.

Google Scholar

[3] W. G. Shen, M. K. Zhou and J. Zha. ICTE. 4137 (2007).

Google Scholar

[4] Q. H. Pan and X. F. Zhang. Rare Metal Mat Eng, Vol. 39(2010), p.1711.

Google Scholar

[5] L. X. Xia, H. B. Wang, J. Wang, K. Gong, Y. Jia, H. L. Zhang, and M. T. Sun. J. Chem. Phys. Vol. 129 (2008), p.134703.

Google Scholar

[6] M. Palacio and B. Bhushan. Ultramicroscopy, Vol. 109(2009), p.980.

Google Scholar

[7] R. Chou, A. H. Battez, J. J. Cabello, J. L. Viesca, A. Osorio and A. Sagastume. Tribol. Int. Vol. 43(2010), p.2327.

DOI: 10.1016/j.triboint.2010.08.006

Google Scholar

[8] P. Wang, S. H. Zheng, Y. S. Yin and D. C. Su. Adv. Mater. Res. Vol. 79-82(2009), p.1847.

Google Scholar

[9] K. Lee, H Y. wang, S. Cheong, Y. Choi, L. Kwon, J. Lee and S. H. Kim. Tribol. Let. Vol. 35(2009), p.127.

Google Scholar

[10] J. Q. Su, T. W. Nelson, T. R. McNelley and R. S. Mishra. Mater. Sci. Eng. A. Vol. 528(2011), p.5458.

Google Scholar

[11] W. Yu, H. Q. Xie, L. F. Chen, Y. Li and C. Zhang. J. Disper. Sci. Techno. Vol. 31(2010), p.364.

Google Scholar

[12] X. F. Zhang, H. B. Yin, X. N. Cheng, H. F. Hu, Q. Yu and A. L. Wang. Mater. Res. Bul. Vol. 41(2006), p. (2041).

Google Scholar

[13] W. H. Qi. PhD THesis, Central South University, Hunan (2004) In Chinese.

Google Scholar

[14] X. F. Zhang, X. N. Cheng, Y. Chong, Z. J. Cao, W. Hao and X. G. Liu. Journal of Jiangsu University: Natural Science Edition. Vol. 31(2010), p.417 In Chinese.

Google Scholar

[15] C. Goyhenex and C. Henry, J. Urban. Philos. Mag. Vol. 69A (1994), p.1073.

Google Scholar

[16] A. G. Saskia. Chem. Soc. Rev. Vol. 26(1997), p.233.

Google Scholar