Influences of Hydrolysis Temperature and Hydrolysis Time on Titanium White Pigment via Short Sulfate Process

Article Preview

Abstract:

Using low concentration TiOSO4 as titanium raw material, anatase white pigment was prepared by self seeded thermal hydrolysis route via short sulfate process. The effects of hydrolysis temperature and hydrolysis time on the structure and pigment properties of the as-prepared samples were investigated. The samples were characterized by XRD, particle size distribution and pigment properties test. The hydrolysis temperature and time had great effects on the hydrolysis rate, particle size distribution, crystal growth and particle aggregation of TiO2, eventually determined the pigment structure and its pigment properties. The optimized hydrolysis temperature was at faint boiling point, and the hydrolysis time after second boiling point was of 2.5h. Anatase white pigment was appropriate particle size, narrow particle size distribution and good pigment properties.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 602-604)

Pages:

1255-1260

Citation:

Online since:

December 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Tioxide Group Limited: Manufacture and General Properties of Titanium Dioxide Pigments, London, 1992.

Google Scholar

[2] E. Santacesaria, M. Tonello, G. Storti, R. C.Pace, S. Carra: J Colloid Interface Sci. Vol. 111 (1986), p.44

Google Scholar

[3] Z. L. Tang: Production and environmental treatment of titanium dioxide. Peking: Chem. Ind. Press, 2000.

Google Scholar

[4] J. Z. Zhao, Z. C. Wang, L.W. Wang: Mater. Chem. Phy. Vol. 63(2000), p.9

Google Scholar

[5] W. Hixson, C.Ralphe: Ind. Eng. Chem. Vol. 37 (1945), p.678

Google Scholar

[6] H. Becker, E. Klein, H. Rechmann: Chem. Eng. J. Vol. 70(1964), p.779

Google Scholar

[7] R. G. Richards, J. F. Duncan: New Zeal. J. Sci. Vol. 19(1976), p.179

Google Scholar

[8] E.Santacesatia: J of Colloid Interf. Sci. Vol. 111 (1986), p.45

Google Scholar

[9] S. Sathyamoorthy, M. J. Hounslob, G. D.Moggridge: Journal of Cryst. Growth Vol. 223 (2001), p.225

Google Scholar

[10] B. U. Grzmil, D. Grela, B. Kic: Chemical Pap. Vol. 63 (2008), p.18

Google Scholar

[11] B. U.Grzmil, D.Grela, B. Kic: Pol. J. Chem. Technol. Vol. 11 (2009), p.15

Google Scholar

[12] I. Szilagyi, E. Konigsberger, P. M. May: Inorg. Chem. Vol. 48 (2009), p.2200

Google Scholar

[13] B. U. Grzmil, D. Grela, B. Kic: Chemical Pap. Vol. 63(2009), p.217

Google Scholar

[14] M. Sgraja, J. Blomer, J. Bertling, P. J. Jansens: Chem. Eng. J. Vol. 160(2000), p.351

Google Scholar

[15] SIR SOC ITAL RESINE SPA, F.R. Patent 2,309,472. (1976)

Google Scholar

[16] F. K. Urakaev, L. S. Bazarov, I. N. Meshcheryakov, et al: Colloid J. Vol. 61 (1999), p.647

Google Scholar

[17] S. Sathyamoorthy, G. D. Moggridge, M. J. Hounslow: Cryst. Growth Des. Vol. 1 (2001), p.123

Google Scholar

[18] C. X. Tian, J. Q. Du, X. H. Chen, W. P. Ma, Z. Q. Luo, X. Z. Cheng, H. F. Hu, D. J. Liu: Trans. Nonferrous Met. Soc. China Vol. S3 (2009), p. S829

Google Scholar