Effects of Hydrolysis Parameters on TiO2 White Pigment from Low Concentration Industrial TiOSO4 Solution via Sulfate Process

Article Preview

Abstract:

Short sulfate process was developed to produce TiO2 white by using unconcentrated industrial TiOSO4 solution as raw material. Herein, anatase titania white pigment was prepared by self-generated seeded thermal hydrolysis route. The effects of hydrolysis parameters (such as pre-adding water volume ratio, F value and aging time) on the structure and pigment properties of the as-prepared samples were investigated. The samples were characterized by XRD, particle size distribution, SEM and pigment properties test. These factors influenced the number and quality of the hydrolysis nuclei, hydrolysis velocity, crystal growth rate and the particles aggregation, eventually determined its structure and pigment properties. The optimized pre-adding water volume ratio was of 0.18:1, the F value was of 1.95 and the aging time after turning-grey-color point was of 20~30 min, and the prepared TiO2 was with anatase phase, narrow particle size distribution and excellent pigment properties.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 602-604)

Pages:

1243-1249

Citation:

Online since:

December 2012

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Tioxide Group Limited: Manufacture and General Properties of Titanium Dioxide Pigments, London Press, (1992)

Google Scholar

[2] Z. L. Tang: Production and environmental treatment of titanium dioxide, Peking: Chem. Ind. Press, 2000 (In Chinese)

Google Scholar

[3] E. Santacesaria, M. Tonello, G. Storti, R. C.Pace, S. Carra: J Colloid Interface Sci. Vol. 111 (1986), p.44

Google Scholar

[4] J. Z. Zhao, Z. C. Wang, L.W. Wang: Mater. Chem. Phy. Vol. 63(2000), p.9

Google Scholar

[5] W. Hixson, C.Ralphe: Ind. Eng. Chem. Vol. 37 (1945), p.678

Google Scholar

[6] H. Becker, E. Klein, H. Rechmann: Chem. Eng. J. Vol. 70(1964), p.779

Google Scholar

[7] R. G. Richards, J. F. Duncan: New Zeal. J. Sci. Vol. 19(1976), p.179

Google Scholar

[8] E.Santacesatia: J of Colloid Interf. Sci. Vol. 111 (1986), p.45

Google Scholar

[9] S. Sathyamoorthy, M. J. Hounslob, G. D.Moggridge: Journal of Cryst. Growth Vol. 223 (2001), p.225

Google Scholar

[10] B. U. Grzmil, D. Grela, B. Kic: Chemical Pap. Vol. 63 (2008), p.18

Google Scholar

[11] B. U.Grzmil, D.Grela, B. Kic: Pol. J. Chem. Technol. Vol. 11 (2009), p.15

Google Scholar

[12] I. Szilagyi, E. Konigsberger, P. M. May: Inorg. Chem. Vol. 48 (2009), p.2200

Google Scholar

[13] B. U. Grzmil, D. Grela, B. Kic: Chemical Pap. Vol. 63(2009), p.217

Google Scholar

[14] F. K. Urakaev, L. S. Bazarov, I. N. Meshcheryakov, V. V. Feklistov, T. N. Drebushchak, Y. P. Savintsev, V. I. Gordeeva, V. S. Shevchenko: Colloid J. Vol. 61 (1999), p.647

DOI: 10.1016/s0022-0248(99)00236-5

Google Scholar

[15] L. Hao, H. Y. Wei: Chem. Eng. Res. Des. Vol. 88 (2010), p.1264

Google Scholar

[16] S. Sathyamoorthy, G. D. Moggridge, M. J. Hounslow: Cryst. Growth Des. Vol. 1 (2001), p.123

Google Scholar

[17] C. X. Tian, J. Q. Du, X. H. Chen, W. P. Ma, Z. Q. Luo, X. Z. Cheng, H. F. Hu, D. J. Liu: Trans. Nonferrous Met. Soc. China Vol. S3 (2009), p. S829

Google Scholar