Determination of Coated Substrate Roughness by Quantification of Measured Depth Profiles

Article Preview

Abstract:

The glow discharge optical emission spectroscopy (GDOES) depth profiles of zinc-coated copper substrates polished by different mesh size sandpapers are well fitted with the mixing-roughness-information (MRI) model. Based on the MRI fits, the copper substrate roughness parameters and the coating layer thickness values are extracted. Using the so-called 84% to 16% method, the depth resolution values of the measured GDOES depth profiles are obtained, thereby the respective roughness parameters are determined. The obtained zinc-coated copper substrate roughness values are correlated with the experimental measurements.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 602-604)

Pages:

1624-1629

Citation:

Online since:

December 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] R. Castro-Rodríguez, A.I. Oliva, Victor Sosa, F. Caballero-Briones, and J.L. Peña: Applied Surface Science, Vol. 161 (2000), p.340.

Google Scholar

[2] Zhibin Huang, Wancheng Zhou, Xiufeng Tang, Dongmei Zhu amd Fa luo: Thin Solid Films, Vol. 519 (2011), p.3100.

Google Scholar

[3] Erik Ortel, Sergey Sokolov, Ralph Kraehnert: Microporous and Mesoporous Meterial, Vol. 127 (2010), p.17.

Google Scholar

[4] E.S. Gadelmawla, M.M. Koura, T.M.A. Maksoud, L.M. Elewa, H.H. Soliman: Jounal of Material Processing Technology, Vol. 123 (2002), p.133.

DOI: 10.1016/s0924-0136(02)00060-2

Google Scholar

[5] GB/T 3505-2000. Geometrical Product Specification (GPS) –Surface Texture: Profile Method-Terms, Definitions and Surface Texture Parameters, (2000).

DOI: 10.3403/02031657

Google Scholar

[6] T.G. King, T.A. Spedding: Wear, Vol. 83 (1982), p.91.

Google Scholar

[7] ASTM E-42, Surface Analysis, E 673-91c. ASTM, Philadelphia (1992).

Google Scholar

[8] J.Y. Wang, S. Hofmann, A. Zalar and E.J. Mittemeijer: Thin Solid Films, Vol. 444, (2003), p.120.

Google Scholar

[9] S. Hofmann, Thin Solid Films, Vol. 398 (2001), p.336.

Google Scholar

[10] J. Y. Wang, U. Starke, E. J. Mittemeijer: Thin Solid Films, Vol. 517 (2009), p.3402.

Google Scholar

[11] S. Hofmann, J. Y. Wang: J. Surf. Anal. Vol. 13 (2006), p.142.

Google Scholar

[12] S. Hofmann, J. Y. Wang: J. Surf. Anal. Vol. 10 (2003), p.52.

Google Scholar

[13] T. Bungo, T. Nagatomi, Y. Takai: Surf. Interface Anal. Vol. 38 (2006), p.1598.

Google Scholar

[14] S. Hofmann: Appl. Surf. Sci. Vol. 241 (2005), p.113.

Google Scholar

[15] S. Hofmann: Surf. Interface Anal. Vol. 21 (1994), p.673.

Google Scholar

[16] S. Hofmann: Appl. Phys. Vol. 13 (1977), p.205.

Google Scholar

[17] J.Y. Wang, Y. Liu, S. Hofmann and J. Kovac: Surf. Interface Anal. Vol. 44 (2012), p.569.

Google Scholar

[18] B. Xu and M. Zhang: Surf. Interface Anal. Vol. 39 (2007), p.885.

Google Scholar

[19] H.H. Huang, C.T. Ho, T.H. Lee, T.L. Lee, K.K. Liao and F.L. Chen: Biomol. Eng. Vol. 21 (2004), p.93.

Google Scholar