[1]
J X Zhou, F Y Xu, T C Wang, A F Cao, C M Yin: Cenozoic deformation history of the Qaidam Basin, NW China: Results from cross-section restoration and implications for Qinghai–Tibet Plateau tectonics. Earth and Planetary Science Letters. Vol. 243 (2006), p.195
DOI: 10.1016/j.epsl.2005.11.033
Google Scholar
[2]
H.A. Koyi, A.Bahroudi: Tectono-sedimentary framework of the Gachsaran Formation in the Zagros foreland basin. Marine and Petroleum Geology. Vol. 21 (2004), p.1295
DOI: 10.1016/j.marpetgeo.2004.09.001
Google Scholar
[3]
J.P. Burg: Shortening of analogue models of the continental lithosphere: New hypothesis for the formation of the Tibetan platean. Tectonics. Vol. 13 (1994),p.475
DOI: 10.1029/93tc02738
Google Scholar
[4]
P.R. Cobbold, F.O. Marques: Effects of topography on the curvature of fold-and-thrust belts during shortening of a 2-layer model of continental lithosphere. Tectonophysics. Vol. 415 (2006), p.65
DOI: 10.1016/j.tecto.2005.12.001
Google Scholar
[5]
K.K. Agarwal, G.K. Agrawal: Analogue Sandbox Models of Thrust Wedges with Variable Basal Frictions. Gondwana Research. Vol. 5 (2002), p.641
DOI: 10.1016/s1342-937x(05)70635-3
Google Scholar
[6]
C.B. Ana: Recess drawn by the internal zone outer boundary and oblique structures in the paleomargin-derived units (Subbetic Domain, central Betics): An analogue modelling approach. Journal of Structural Geology. Vol. 30 (2008), p.65
DOI: 10.1016/j.jsg.2007.09.009
Google Scholar
[7]
M. Bonini: Deformation patterns and structural vergence in brittleeductile thrust wedges: An additional analogue modelling perspective. Journal of Structural Geology. Vol. 29 (2007), p.141
DOI: 10.1016/j.jsg.2006.06.012
Google Scholar
[8]
E. Costa, B.C. Vendeville: Experimental insights on the geometry and kinematics of fold-and-thrust be1ts above weak. viscous evaporitic decollement. Vol. 24 (2002), p.1729
DOI: 10.1016/s0191-8141(01)00169-9
Google Scholar
[9]
M. Bonini: Deformation patterns and structural vergence in brittleeductile thrust wedges: An additional analogue modelling perspective. Journal of Structural Geology. Vol. 29 (2007), p.141
DOI: 10.1016/j.jsg.2006.06.012
Google Scholar
[10]
M. Lujan, F. Rossetti, F. Storti: Flow trajectories in analogue viscous orogenic wedges: Insights on natural orogens. Tectonophysics. Vol. 484 (2010), p.119
DOI: 10.1016/j.tecto.2009.09.009
Google Scholar
[11]
M. Bonini: Detachment folding, fold amplification, and diapirism in thrust wedge experiments. Tectonics. Vol. 22 (2003), p.1065
DOI: 10.1029/2002tc001458
Google Scholar
[12]
S.E. Lallemand, P. Schnuerle, J. Malavieille : Coulomb theory applied to accretionary and non-accretionary wedges; possible causes for tectonic erosion and/ or frontal accretion. Journal of Geophysical Research. Vol. 99 (6), p.12033
DOI: 10.1029/94jb00124
Google Scholar
[13]
M.A. Gutscher, N. Kukowski, J. Malavieille, S. Lallemand: Cyclical behavior of thrust wedges; insights from high basal friction sandbox experiments. Geology. Vol. 24 (1996), p.135
DOI: 10.1130/0091-7613(1996)024<0135:cbotwi>2.3.co;2
Google Scholar
[14]
P.R. Cobbold: Sand as an analogue material in tectonics; advantages, limitations and future developments. European Union of Geosciences Conference Abstracts. Vol.104 (1999), p.602.
Google Scholar
[15]
W.P. Schellart: Shear test results for cohesion and friction coefficients for different granular materials: scaling implications for their usage in analogue modelling. Tectonophysics. Vol. 324 (2000), p.1
DOI: 10.1016/s0040-1951(00)00111-6
Google Scholar