Microstructure and Mechanical Properties of Cu-Cr-Zr Alloy by Friction Stir Welding

Article Preview

Abstract:

In this study, Cu-Cr-Zr alloy joints are successfully fabricated by friction stir welding (FSW). Defect-free weld are produced on 12mm thick Cu-Cr-Zr alloy plate useing a non-consumable tool with a specially designed and shoulder with a constant rotation speed and a fixed traverse speed. The effect of friction stir welding (FSW) on the microstructure and mechanical properties of Cu-Cr-Zr alloy joints are investigated in details: The joints showed the presence of various zones such as nugget zone (NZ) and thermo-mechanically affected zone (TMAZ) and base metal (BM), the microhardness and the tensile strength of welded joints are lower than that of the base material.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 602-604)

Pages:

608-611

Citation:

Online since:

December 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] P.K. Jayakumar, K. Balasubramanian, G. Rabindranath Tagore. Mater. Sci. Eng. A 538 (2012) 7–13.

Google Scholar

[2] Huang Fuxiang et al. Scripta Materialia 48 (2003) 97–102.

Google Scholar

[3] H.J. Ryu and H.K. Baik: J. Mater. Sci., 2000, 35, 3641.

Google Scholar

[4] H.I. Choi, K.Y. Lee and S.L. Kwun: J. Mater. Sci. Lett., 1997, 16, 600.

Google Scholar

[5] D.M. Zhao, Q.M. Dong and P. Liu: Mater. Chem. Phys., 2003, 79, 81.

Google Scholar

[6] J.H. Su, Q.M. Dong and P. Liu: J. Mater. Sci. Technol., 2003, 19(6), 529.

Google Scholar

[7] T. Sakthivel•J. Mukhopadhyay. J. Mater. Sci., 42 (2007): 8126–8129.

Google Scholar

[8] R.S. Mishra Z.Y. Ma. Mater Sci Eng R 50 (2005) 1–78.

Google Scholar

[9] Won-Bae Lee, Seung-Boo Jung. Materials Letters 58 (2004) 1041– 1046.

Google Scholar

[10] C.G. Andersson and R.E. Andrews Proceedings of the First International Symposium on Friction Stir Welding, Thousand Oaks, California (1999).

Google Scholar

[11] K. Okamoto, M. Doi, S. Hirano, K. Aota, H. Okamura, Y. Aono and T.C. Ping Proceedings of the Third International Symposium on Friction Stir Welding, Kobe, Japan (2001).

Google Scholar

[12] C.G. Andersson, R.E. Andrews, B.G.I. Dance, M.J. Russell, E.J. Olden and R.M. Sanderson Proceedings of the Second International Symposium on Friction Stir Welding, Gothenburg, Sweden (2000).

Google Scholar

[13] K. Surekha, A. Els-Botes. Materials and Design 32 (2011) 911–916.

Google Scholar

[14] Y.F. Sun, H. Fujii. Mater. Sci. Eng. A 527 (2010) 6879–6886.

Google Scholar

[15] Y.S. Sato, S.H.C. Park, H. Kokawa, Metall. Mater. Trans. 32A (2001) 3033–3042.

Google Scholar

[16] J.Q. Su, T.W. Nelson, R. Mishra, M. Mahoney, Acta Mater. 51 (2003) 713–729.

Google Scholar

[17] Y.S. Sato, M. Urata, H. Kokawa, Metall. Mater. Trans. 33A (2002) 625–635.

Google Scholar

[18] H.S. Park, T.K. Kimura, T. Murakami, Y. Nagano, K. Nakata, M. Ushio. Mater. Sci. Eng. A 371 (2004) 160–169.

Google Scholar