Capacitive Study of Ni(OH)2 Xerogels in KOH Solution

Article Preview

Abstract:

Ni(OH)2 xerogels were formed by sol-gel method at 80 °C followed drying at 110 °C and ambient pressure. The structure of Ni(OH)2 xerogels was characterized using X-ray diffraction, transmission electron microscope (TEM) and N2 (77K) adsorption. X-Ray Diffraction (XRD) results showed that the material obtained has a crystalline -Ni(OH)2. TEM images showed that average size of the crystalline phase is about 10 nm. Results of N2 (77K) adsorption isotherm showed that the (BET) specific surface area is 232 m2/g and the Pore size distribution is in the regime 1-4 nm (Barrett–Joyner–Halenda, BJH). The Ni(OH)2 xerogels electrodes were activated using cyclic voltammetry, and their capacitive performance was evaluated using cyclic voltammetry (CV) and constant current discharge. The Ni(OH)2 xerogels electrodes exhibited excellent capacitive behavior with a specific capacitance of 635 F/g (calculated by CV). High performance obtained indicates that the Ni(OH)2 xerogels are promising electrode materials for supercapacitors, and the electrochemical activation of these electrodes is doable.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 608-609)

Pages:

1106-1110

Citation:

Online since:

December 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] V. Mancier, A. Metrot, P. Willmann. A 'transverse' ac impedance method to follow the nickel oxo-hydroxide electrode charging process. Electrochimica Acta, 2002, 47: 1633-1640

DOI: 10.1016/s0013-4686(01)00896-9

Google Scholar

[2] Z. Chang, H. Tang, J. Chen. Surface modification of spherical nickel hydroxide for nickel electrodes. Electrochemistry Communications, 1999, 1: 513-516

DOI: 10.1016/s1388-2481(99)00098-3

Google Scholar

[3] Y. Morioka, S. Narukawa, T. Itou. State-of-the-art of alkaline rechargeable batteries. J. Power Sources, 2001, 100: 107-116

DOI: 10.1016/s0378-7753(01)00888-6

Google Scholar

[4] C. Lin, J. A. Ritter, B. N. Popov. Characterization of Sol-Gel derived cobalt oxide Xerogels as electrochemical capacitors. J. Electrochem. Soc., 1998, 145(12): 4097-4103

DOI: 10.1149/1.1838920

Google Scholar

[5] Y. Mo, M. R. Antonio, D. A. Scherson. In Situ Ru K-Edge X-Ray Absorption Fine Structure Studies of Electroprecipitated Ruthenium Dioxide Films with Relevance to Supercapacitor Applications. J. Phys. Chem. B, 2000, 104 (42): 9777-9779

DOI: 10.1021/jp002355a

Google Scholar

[6] J. P. Zheng, T. R. Jow. A new Charge storage mechanism for electrochemical capacitors. J. Electrochem. Soc., 1995, 142(1): L6-L8

DOI: 10.1149/1.2043984

Google Scholar

[7] J. P. Zheng. Ruthenium oxide carbon composite electrodes for electrochemical capacitors. Electrochem. Solid State Lett., 1999, 2(8): 359-361

DOI: 10.1149/1.1390837

Google Scholar

[8] J. Jiang, A. Kucernak. Electrochemical supercapacitor material based on manganese oxide: preparation and characterization. Electrochimica Acta, 2002, 47: 2381-2386

DOI: 10.1016/s0013-4686(02)00031-2

Google Scholar

[9] B. Messaoudi, S. Joiret, M. Keddam, H. Takenouti. Anodic behaviour of manganese in alkaline medium. Electrochimica Acta, 2001, 46: 2487-2498

DOI: 10.1016/s0013-4686(01)00449-2

Google Scholar

[10] H. Y. Lee, J. B. Goodenough. Ideal supercapacitor behavior of amorphous V2O5·nH2O in potassium Chloride aqueous solution. Solid State Chem., 1999, 148: 81-84

DOI: 10.1006/jssc.1999.8367

Google Scholar

[11] K.-C. Liu, M. A. Anderson. Porous nickel oxide/nickel film for electrochemical capacitors. J. Electrochem. Soc., 1996, 143(1): 124-130

DOI: 10.1149/1.1836396

Google Scholar

[12] V. Srinivasan, J. W. Weidner. An electrochemical route for making porous nickel oxide electrochemical capacitors. J. Electrochem. Soc., 1997, 144(8): L210-213

DOI: 10.1149/1.1837859

Google Scholar

[13] J. P. Zheng, P. J. Cygan, T. R. Jow. Hydrous Ruthenium oxide as an electrode material for electrochemical capacitors. J. Electrochem. Soc., 1995, 142(8): 2699-2703

DOI: 10.1149/1.2050077

Google Scholar

[14] K.-W. Nam, K.-B. Kim. A Study of the Preparation of NiOx Electrode via Electrochemical Route for Supercapacitor Applications and Their Charge Storage Mechanism. J. Electrochem. Soc., 2002, 149(3): A346-354

DOI: 10.1149/1.1449951

Google Scholar

[15] S.-C. Pang, M. A. Anderson, T. W. Chapman. Novel Electrode Materials for Thin-Film Ultracapacitors: Comparison of Electrochemical Properties of Sol-Gel-Derived and Electrodeposited Manganese Dioxide. J. Electrochem. Soc., 2000, 147(2): 444-450

DOI: 10.1149/1.1393216

Google Scholar