Preparation of Y Zeolite-Based Catalysts and their Catalytic Cracking Performances of Venezuelan Heavy Oil

Article Preview

Abstract:

Five kinds of modified Y zeolite-based fluid catalytic cracking (FCC) catalysts were prepared. The N2 adsorption desorption and NH3 temperature-programmed-desorption (NH3-TPD) were used to investigate the pore structure and acidic properties of the catalysts. The effects of pore structure and acidic properties of catalysts on the catalytic cracking performance of Venezuelan heavy oil were carried out using an advanced cracking evaluation unit. The results of N2 adsorption desorption and NH3-TPD show that CAT-A and CAT-B catalysts with rundle pore distribution have a similar pore sizes and acidSubscript textSubscript textic properties. The catalytic cracking results show that the acidic properties and the pore distribution of the catalysts have obvious effects on the conversion and product distribution. The light oil yield and total liquid oil yield can reach 58.75wt% and 73.83 wt%, respectively, under reaction temperature of 520°C.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 608-609)

Pages:

1407-1412

Citation:

Online since:

December 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] X. Dupain, M. Makkee, J. A. Moulijn: Appl. Catal., A: Gen. Vol. 297 (2006), p.198

Google Scholar

[2] G. Jimenez-Garcia, R. Aguilar-Lopez and R. Maya-Yescas: Fuel Vol. 90 (2011), p.3531

Google Scholar

[3] M.Z. Min: Advanced Materials Industry Forum, Vol. 1 (2001), p.1

Google Scholar

[4] Z. B. Chen: Petroleum Processing And Petrochemicals Vol. 26 (1995), p.14

Google Scholar

[5] J. M. Arandes, I. Torre, M. J. Azkoiti, J. Erena and J. Bilbao: Energy Fuels Vol. 22 (2008), p.2149

Google Scholar

[6] G. Puente, A. Devard and U. Sedran: Energy Fuels Vol. 21 (2007), p.3090

Google Scholar

[7] L. Carbognani, M. F. Gonzalez, P. Pereira-Almao: Energy Fuels Vol. 21 (2007 ), p.1631

Google Scholar

[8] O. Omole, M. N. Olieh, T. Osinowo: Fuel Vol. 78 (1999), p.1489

Google Scholar

[9] J. B. Joshi, A. B. Pandit, K. L. Kataria, R. P. Kulkarni, A. N. Sawarkar, A. N. Sawarkar, D. Tandon, Y. Ram, M. M. Kumar: Ind. Eng. Chem. Res. Vol. 47 (2008), p.8960

DOI: 10.1021/ie0710871

Google Scholar

[10] B.J. Shen, Z.X. Qin, X.H. Gao, F. Lin, S. Zhou, W. Shen, B.J. Wang, H.J. Zhao and H.H. Liu: Chinese Journal of Catalysis, Vol.33 (2012), p.152

Google Scholar

[11] J. Karger and D.M. Ruthven: Diffusion in Zeolites and other Microporous Solids, Wiley, New York, 1992.

Google Scholar

[12] J. Maselli and A. Peters: Catal. Rev. Sci. Eng. Vol. 26 (1984), p.525.

Google Scholar

[13] G. Wang, J. S. Gao, C. M. Xu and Y. Feng: Journal of Fuel Chemistry and Technology Vol. 33 (2005), p.440

Google Scholar

[14] X.N. Li, G. Wang, J.S. Gao: Petroleum Refinery Engineering Vol. 39 (2009), p.5

Google Scholar

[15] X.H. Meng, C.M. Xu, J.S. Gao and L. Li: Applied Catalysis A General Vol. 294 (2005), p.168

Google Scholar

[16] X.H. Meng, C.M. Xu, J.S. Gao and Q. Zhang: Chemical Engineering and Processing Vol. 43 (2004), p.965.

Google Scholar