[1]
Donald W Corson. High power battery system for hybrid vehicles. Journal of Power Sources, 2002, 105; 110-113.
DOI: 10.1016/s0378-7753(01)00927-2
Google Scholar
[2]
Ahmad A Pesaran, Steve Burch, Matthew Keyser. An approach for designing thermal management systems for electric and hybrid vehicle battery packs. The Fourth Vehicle Thermal Management System Conference and Exhibition, London, May 24-27, 1999, CP-540-25992.
Google Scholar
[3]
Araki T, Nakayama M, Fukuda K, et al. Thermal behavior of small nickel metal hydride battery during rapid charge and discharge cycles. Electrochemical Society, 2005, 152(6): A1128-A1135.
DOI: 10.1149/1.1914744
Google Scholar
[4]
Belt R, Ho D, Miller J. The effect of temperature on capacity and power in cycled lithium batteries. Journal of Power Sources, 2005, 142(1/2):354-360.
DOI: 10.1016/j.jpowsour.2004.10.029
Google Scholar
[5]
Otmar B, Gueenyter G. Systems for hybrid cars. Journal of Power Sources, 2004, 127:8-15.
Google Scholar
[6]
Michael R. Cosley, Marvin P. Garcia. Battery Thermal Management System. Telecommunications Energy Conference, 2004. INTELEC 2004. 26th Annual International .2004, 4: 38-45.
Google Scholar
[7]
Fukai J, Kanou M, Kodama Y, et al. Thermal conductivity enhancement of energy storage media using carbon fibers. Energy Conversion and Management, 2000, 41(14):1543-1556.
DOI: 10.1016/s0196-8904(99)00166-1
Google Scholar
[8]
Said A H,Selman J R. Thermal modeling of secondary lithium batteries for electric vehicle/hybrid electric vehicle applications. Journal of Power Sources, 2002, 110: 341-348.
DOI: 10.1016/s0378-7753(02)00196-9
Google Scholar
[9]
Kizilel R, Lateef A, Sabbah R, et al. Passive thermal management using phase change material (PCM) for EV and HEV Li- ion batteries. Vehicle Power and Propulsion, 2005 IEEE Conference, Chicago, 7-9 Sept,2005.
DOI: 10.1109/VPPC.2005.1554585
Google Scholar