The Engineering Properties of Kaolinitic Clay and Burning Shell Activated by Alkali Solution

Article Preview

Abstract:

The use of kaolinitic clay, which chemical compound consists of mainly silica (SiO2) and alumina (Al2O3), mixing with charred seashells, consisting of mainly calcium oxide (CaO), could be improved by polymerization process. The ratio of kaolinitic clay and charred seashells used in the study ranges from 1: 0.6 to 1: 1.6 by weight. After curing for 28 days, the improved material has the ultimate compressive strength in the range of 3.7 to 7.9 MPa. In additions, the improved material has good heat resistance property. The utilization of natural waste materials together with polymerization technique could improve the material properties to meet the demand of construction industry in the future.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 608-609)

Pages:

1795-1800

Citation:

Online since:

December 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J. Davidovits, U.S. Patent 4,349,386. (1982)

Google Scholar

[2] J. Davidovits, U.S. Patent 4,472,199. (1984)

Google Scholar

[3] J. Davidovits: J. Therm. Anal. Calorim. Vol. 37 (1991), p.1633

Google Scholar

[4] D.Akolekar, A. Chaffee and R. F. Howe: Zeolites. Vol. 19 (1997), p.359

Google Scholar

[5] A. Buchwald and M. Schulz: Cement Concrete Res. Vol. 35 (2005), p.968

Google Scholar

[6] F. Pacheco-Torgal, J. Castro-Gomes and S. Jalali: Constr. Build. Mater. Vol. 22 (2008), p.1305

Google Scholar

[7] F. Pacheco-Torgal, J. Castro-Gomes and S. Jalali: Constr. Build. Mater. Vol. 22 (2008), p.1315

Google Scholar

[8] Z. Zuhua, Y. Mao, Z. Huajun and C. Yue: Appl. Clay Sci. Vol. 43 (2009), p.218

Google Scholar

[9] M. R. Wang, D. C. Jia, P. G. He and Y. Zhou: Mater. Lett. Vol. 64 (2010), p.2551

Google Scholar

[10] Z. Zhang, H. Wang, X. Yao and Y. Zhu. 2012: Cement Concrete Comp. Vol. 34 (2012), p.709

Google Scholar

[11] Z. Yunsheng, S. Wei and L. Zongjin: Appl. Clay Sci. Vol. 47 (2010), p.271

Google Scholar

[12] M. Arikan, K. Sobolev, T. Ertün, A. Yeğinobali and P. Turker: Constr. Build. Mater. Vol. 23 (2009), p.62

Google Scholar

[13] M. B. Diop and M. W. Grutzeck: Constr. Build. Mater. Vol. 27 (2008), p.1114

Google Scholar

[14] M. B. Diop, M. W. Grutzeck and L. Molez: Appl. Clay Sci. Vol. 54 (2011), p.172

Google Scholar

[15] T. W. Cheng and J. P. Chiu: Miner. Eng. Vol. 16 (2003), p.205

Google Scholar

[16] C. Y. Heah, H. Kamarudin, A. M. Mustafa Al Bakri, M. Binhussain, M. Luqman, I. K. Nizar, C. M. Ruzaidi and Y. M. Liew: Phys Proc. Vol. 22 (2011), p.305

DOI: 10.1016/j.phpro.2011.11.048

Google Scholar

[17] Y. M. Liew, H. Kamarudin, A. M. Mustafa Al Bakri, M. Luqman, I. Khairul Nizar, C. M. Ruzaidi and C. Y. Heah: Constr. Build. Mater. Vol. 30 (2012), p.794

DOI: 10.1016/j.conbuildmat.2011.12.079

Google Scholar

[18] C.Y. Heah, H. Kamarudin, A.M. Mustafa Al Bakri, M. Bnhussain, M. Luqman, I. Khairul Nizar, C.M. Ruzaidi, Y.M. Liew: Constr. Build. Mater. Vol. 35 (2012), p.912

DOI: 10.1016/j.conbuildmat.2012.04.102

Google Scholar

[19] C.Y. Heah, H. Kamarudin, A.M. Mustafa Al Bakri, M. Bnhussain, M. Luqman, I. Khairul Nizar, C.M. Ruzaidi, Y.M. Liew: Adv. Mat. Res. Vol. 479-481 (2012), p.357

DOI: 10.1016/j.conbuildmat.2012.04.102

Google Scholar

[20] M.W. Wang, Y. Zheng, D.C. Jia and Y. Zhou: Adv. Mat. Res. Vol. 399-401 (2012), p.469

Google Scholar

[21] J. Temuujin, W. Rickard, M. Lee and A. van Riessen: J Non-Cryst. Solids. Vol. 357 (2011), p.1399

Google Scholar