Bionic Study on Structural Solar Absorption Materials Based on Microstructure Pattern of Butterfly Scales

Article Preview

Abstract:

With development of solar technology, high absorbance is no longer a hard problem in solar heat utilization. Many solar absorbing coating can easily get absorbance over 90%, but the coating materials and their manufacturing processes may harm seriously to human and environment. A typical plateau butterfly-- Lycaenidae was studied with bionic method in this work. It has considerable solar absorbing capacity for the physical microstructure in its wing scales but not chemicals. The 3D microstructure of the wing scales was measured and analyzed with SEM (Scanning Electronic Microscope) and TEM (Transition Electronic Microscope). The solar absorbing mechanism of the ridge and bottom microstructure was analyzed respectively based on geometrical optics and photon crystal theories. This study may promote solar heat utilization through a bionic structural material way.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 608-609)

Pages:

190-194

Citation:

Online since:

December 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Shirun Li, Xiping Xu, Gang Li, et al. Solar Selective Absorbing Coating for Medium/High Temperature [J]. Solar Energy, Vol. 3 (2010), pp.16-19

Google Scholar

[2] Yuzhi Hou Lijun, Jiang, Shumao Wang, et al. Investigation and Development of Metal/Ceramic Selective Absorbing Coating for Medium & High Temperature Applications [J]. Rare Metals, Vol. 33 (2009), pp.279-284

Google Scholar

[3] Cantu'Monica-Lira, Sabio Angel Morales, Brustenga Alex, et al. Electrochemical Deposition of Black Nickel Solar Absorber Coatings on Stainless Steel AISI316L for Thermal Solar Cells [J]. Solar Energy Materials & Solar Cells, Vol. 87(2005), pp.685-694

DOI: 10.1016/j.solmat.2004.07.045

Google Scholar

[4] Dawei Ding, Weimin Cai, Mingce Long, et al. Optical, Structural and Thermal Characteristics of Cu–CuAl2O4 hybrids Deposited in Anodic Aluminum Oxide as Selective Solar Absorber [J]. Solar Energy Materials and Solar Cells, Vol. 94 (2010), pp.1578-1581

DOI: 10.1016/j.solmat.2010.04.075

Google Scholar

[5] Hasti Majidi, Jason B. Baxter. Electrodeposition of CdSe Coatings on ZnO Nanowire Arrays for Extremely Thin Absorber Solar Cells [J]. Electrochimica Acta, Vol. 56 (2011), pp.2703-2711

DOI: 10.1016/j.electacta.2010.12.044

Google Scholar

[6] T. Boström, S. Valizadeh, J. Lu, et al.. Structure and Morphology of Nickel-alumina/silica Solar Thermal Selective Absorbers [J]. Journal of Non-Crystalline Solids, Vol. 357 (2011), pp.1370-1375

DOI: 10.1016/j.jnoncrysol.2010.09.023

Google Scholar

[7] Xinli Liu, Shiliang Wang, Quan Zhang, et al. Vapor Phase Synthesis and Optic Properties of MoO2 Micro/nanosheet [J]. Chinese Journal of Materials Research, Vol. 24 (2001), pp.17-24

Google Scholar

[8] Zhibin Li, Yating Wu, Yida Deng, et al. Application of Hollow Ni Spheres to Solar Selective Absorbing Coating [J]. Acta Energiae Solaris Sinica, Vol. 29 (2008), pp.46-49

Google Scholar

[9] Banerjee S, Cole J B, Yatagai T. Colour Characterization of a Morpho butterfly Wing-scale Using a High Accuracy Nonstandard Fnite-difference Time-domain Method [J]. Micron, Vol. 38 (2007), pp.97-103

DOI: 10.1016/j.micron.2006.07.004

Google Scholar

[10] Vukusic P, Sambles J R, Lawrence C R, et al. Limited-view Iridescence in the Butterfly Ancylurismeliboeus[J]. Proc. R. Soc. Lond. B. Vol. 269 (2002), pp.7-14

DOI: 10.1098/rspb.2001.1836

Google Scholar

[11] Vukusic P, Wootton R J, Sambles J R. Remarkable Iridescence in the Hindwings of the Damselfly Neurobasis chinensis (Linnaeus) (Zygoptera, Calopterygidae). Proc R Soc Lond B, Vol. 271, (2004), pp.595-601

DOI: 10.1098/rspb.2003.2595

Google Scholar

[12] Potyrailo R A, Ghiradella H, Vertiatchikh A et al.. Morpho Butterfly Wing Scales Demonstrate Highly Selective Vapor Response [J]. Nat. Photonics, Vol. 1 (2007), pp.123-128

DOI: 10.1038/nphoton.2007.2

Google Scholar

[13] Youhua Qin, Feng Liu, Haiwei Yin, et al. 1D Photonic Crystal structure in Papilio bianor ganesa Wings [J]. Chinese Science Bulletin, Vol. 52 (2007), pp.2101-2106

DOI: 10.1007/s11434-007-0412-9

Google Scholar

[14] Guangping Liu, Yimin Xuan, Yuge Han. Structure-color Characteristic of Morpho Butterfly [J]. Acta Laser Biology Sinica, Vol. 15(2006), pp.511-514

Google Scholar

[15] Xiaoxiang He, Hao Li. Angle-dependent EM Scattering Analysis of Special Photonic Crystal and Its Application[J]. Acta Optica Sinica, Vol. 29 (2008), pp.256-261

DOI: 10.3788/aos20092901.0256

Google Scholar

[16] Liao G L, Zuo H B, Cao Y B, et al. Optical Properties of the Micro/nanoStructures of Morpho Butterfly Wing Scales[J]. Sci. China Ser E-Tech Sci, Vol. 53 (2010), pp.175-181

DOI: 10.1007/s11431-009-0297-8

Google Scholar

[17] Liyan Wu, Zhiwu Han, Yuqiu Song, et al. Replication of Papilio maackii Ménétriés Butterfly Scale Structural Color Using a Magnetron Sputtering Method[J]. Chinese Science Bulletin, Vol. 56 (2011), pp.3111-3114

DOI: 10.1007/s11434-011-4898-9

Google Scholar

[18] Luquan Ren, Zhaomei Qiu, Liyan Wu, et al. Experimental Investigation on Color Variation Mechanisms of Structural Light in Papilio maackii ménétriès Butterfly Wings. Science in China Series E: Technological Sciences, Vol. 50 (2007), pp.430-436

DOI: 10.1007/s11431-007-0052-y

Google Scholar

[19] G. Márk., Z.Vértesy, K.Kertész, et al.. Order-disorder Effects in Structure and Color Relation of Photonic-crystal-type Nanostructures in Butterfly Wing Scales[J]. Physical Review, E 80: 051903 (2009)

DOI: 10.1103/physreve.80.051903

Google Scholar