[1]
A. Mostafaeipour:Productivity and development issues of global wind turbine industry, Vol. 14(2010), No.3, pp.1048-1058.
Google Scholar
[2]
Information on http://www.wwindea.org/home/index.php.
Google Scholar
[3]
M. Wilkinson, S. Fabio and M. Knowles: Towards the zero maintenance wind turbine. 41st international universities power engineering conference, conference proceedings, 2006, pp.74-8.
DOI: 10.1109/upec.2006.367718
Google Scholar
[4]
Z. Hameed, Y.S. Hong and Y.M. Cho: Condition monitoring and fault detection of wind turbines and related algorithms: A review. Renewable & sustainable energy reviews, Vol. 13(2009), No.1, pp.1-39.
DOI: 10.1016/j.rser.2007.05.008
Google Scholar
[5]
Y. Amirat, M.E.H. Benbouzid and B. Bensaker: Condition monitoring and fault diagnosis in wind energy conversion systems: A review. Proceedings of the international electric machines and drives conference, 2007, pp.1434-1439.
DOI: 10.1109/iemdc.2007.383639
Google Scholar
[6]
Bin Lu, Yaoyu Li and Xin Wu: A review of recent advances in wind turbine condition monitoring and fault diagnosis. 2009 IEEE power electronics and machines in wind applications, pp.109-115.
DOI: 10.1109/pemwa.2009.5208325
Google Scholar
[7]
A. Azzalini, M. Farge and K. Schneider: Nonlinear wavelet thresholding: a recursive method to determine the optimal denoising threshold, Applied and Computational Harmonic Analysis, Vol. 18(2005), pp.177-185.
DOI: 10.1016/j.acha.2004.10.001
Google Scholar
[8]
Dengwen Zhou and Wengang Cheng: Image denoising with an optimal threshold and neighbouring window, Pattern Recognition Letters, Vol. 29(2008), pp.1694-1697.
DOI: 10.1016/j.patrec.2008.04.014
Google Scholar
[9]
Mingyan Jiang and Dongfeng Yuan: Wavelet threshold optimization with artificial fish swarm algorithm, Neural Networks and Brain, 2005, International Conference on 13-15, 2005,pp.569-572.
DOI: 10.1109/icnnb.2005.1614677
Google Scholar
[10]
Ronggen Yang and Mingwu Ren: Wavelet denoising using principal component analysis. Expert systems with application, Vol. 38 (2011), pp.1073-1076.
DOI: 10.1016/j.eswa.2010.07.069
Google Scholar
[11]
A.R. Naranjo, M. Elena and M. Otero: A method for the correlation dimension estimation for on-line condition monitoring of large rotating machinery, Mechanical Systems and Signal Processing, Vol. 19 (2005), pp.939-954.
DOI: 10.1016/j.ymssp.2004.08.001
Google Scholar
[12]
Zhongsheng Wang and Hongkai Jiang: Robust incipient fault identification of aircraft engine rotor based on wavelet and fraction, Aerospace Science and Technology, Vol. 14 (2010), pp.221-224.
DOI: 10.1016/j.ast.2010.01.002
Google Scholar
[13]
Xiaoling Sheng, Shuting Wan and Fengqi. Tian: Gear fault diagnosis of wind turbine generator system based on lifting wavelet-zooming envelope analysis, 2011 2nd international conference on mechanic automation and control engineering, 2011,pp.1332-1335.
DOI: 10.1109/mace.2011.5987189
Google Scholar
[14]
Xingjia Yao, Changchun Guo and Mingfang Zhong: Wind turbine gearbox fault diagnosis using adaptive Morlet wavelet spectrum. 2009 2nd international conference on intelligent computing technology and automation, 2009, pp.580-583.
DOI: 10.1109/icicta.2009.375
Google Scholar
[15]
Yonghua Jiang, Baoping Tang and Yi Qin: Feature extraction method of wind turbine based on adaptive Monet wavelet and SVD. Renewable energy, Vol. 36(2011), No.8, pp.2146-2153.
DOI: 10.1016/j.renene.2011.01.009
Google Scholar
[16]
Yanyong Li: A discussion on using empirical mode decomposition for incipient fault detection and diagnosis of the wind turbine gearbox. Proceedings of world non-grid-connected wind power and energy conference, 2010, pp.59-63.
DOI: 10.1109/wnwec.2010.5673197
Google Scholar
[17]
S Shulian Yang , Wenhai Li and Canlin Wang: The intelligent fault diagnosis of wind turbine gearbox based on artificial neural network. Proceedings of international conference on condition monitoring and diagnosis, 2008, pp.1327-1330.
DOI: 10.1109/cmd.2008.4580221
Google Scholar
[18]
Qin Huang, Dongxiang Jiang and Dongxiang Hong: Application of wavelet neural networks on vibration fault diagnosis for wind turbine gearbox. Lecture notes in computer science, 2008, pp.313-320.
DOI: 10.1007/978-3-540-87734-9_36
Google Scholar
[19]
Wei Teng, Qingfeng Gao and Xin Wu: Defect detection of wind turbine gearbox using demodulation analysis. 2011 2nd International conference on mechanic automation and control engineering, 2011,pp.4838-4841.
DOI: 10.1109/mace.2011.5988096
Google Scholar
[20]
Shaohua Li, Dongxiang Jiang and Minghao Zhao: Experimental investigation and analysis for gearbox fault. Proceedings of 2010 world non-grid-connected wind power and energy conference, 2010, pp.91-96.
DOI: 10.1109/wnwec.2010.5673173
Google Scholar
[21]
Fucheng Zhou: Fault diagnosis method of gear of wind turbine gearbox based on undecimated wavelet transformation. 2010 International conference on computer design and applications, Vol. 4(2010), pp.606-609.
DOI: 10.1109/iccda.2010.5540743
Google Scholar
[22]
Fucheng Zhou: Research on online monitoring and diagnosis of bearing fault of wind turbine gearbox based on undecimated wavelet transformation. Proceedings-2010 IEEE youth conference on information, computing and telecommunications, 2010, pp.251-254.
DOI: 10.1109/ycict.2010.5713092
Google Scholar